首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
针对青藏高原植被稀疏、土壤颗粒较粗糙的特征,基于Noah陆面过程模型(LSM),模拟了植被和土壤对整个高原多年冻土分布和关键属性特征(包括活动层厚度和年平均地温)的影响,并通过野外调查数据对模拟结果进行了评估。结果表明:在考虑稀疏植被和粗糙土壤后,改进的Noah LSM对青藏高原多年冻土分布和属性的模拟性能都有所改善;多年冻土面积由原始Noah模型模拟的1.216×106 km2减少到1.113×106 km2,模拟的空间差异主要出现在多年冻土与季节冻土的过渡区及高原南部的岛状多年冻土区;模拟的高原平均活动层厚度由原始Noah模型模拟的2.55 m增加到2.92 m,年平均地温也由-2.17℃增加到-1.65℃。总之,青藏高原稀疏植被和粗糙土壤对多年冻土有重要影响。  相似文献   

2.
祁连山区多年冻土空间分布模拟   总被引:1,自引:1,他引:0  
祁连山区位于青藏高原东北边缘,是亚洲水塔重要的组成部分,多年冻土的变化对生态系统和水资源平衡有着重要影响。基于青藏高原第二次综合科学考察、道路勘察钻孔点以及前人所获得的多年冻土下界资料,回归得出祁连山区多年冻土下界统计模型,借助ArcGIS平台在DEM数据的支持下,模拟出祁连山区多年冻土空间分布图。结果表明:祁连山区多年冻土分布的下界具有良好的地带性规律,表现为随经纬度增加而降低的规律;祁连山区多年冻土在空间分布上呈现出以哈拉湖为中心向四周扩散的分布格局;祁连山区总面积约为16.90×104 km2,其中多年冻土面积约为8.03×104 km2,占总面积约47.51%。多年冻土区与季节冻土区之间存在着有不连续多年冻土分布的过渡区,过渡区面积约1.43×104 km2,占总面积约8.46%。  相似文献   

3.
生态地质环境质量显示一个区域地质作用与生态空间分布的整体情况。为了给马六甲海峡北岸马来西亚西南沿海地区的生态保护修复及“一带一路”投资建设提供依据,将地理信息系统技术与层次分析法相结合,以马来西亚基础地质、地质灾害遥感地质专题应用及编图项目成果数据集为基础数据,构建了该区的生态地质环境质量评价指标体系并进行综合评价。通过分析结果将研究区的生态地质环境质量划分为优等、良好、中等、较差4个等级,其中:优等区和良好区面积较大,分别为2 753.31 km2和2 960.33 km2,占研究区总面积的34.19%和36.76%,主要分布在北部平原地区及沿海地区;中等区和较差区面积分别为1 702.72 km2和618.57 km2,占研究区总面积的21.37%和7.68%,主要分布在雪兰莪州中部、森美兰州南部及马六甲州北部地区。从评价结果上看,该地区总体上生态地质环境质量较好,优等区和良好区总和占研究区总面积的70.00%以上,中等区和较差区主要受地层构造和生态条件的限制,需要针对具体问题进行环境保护及生态...  相似文献   

4.
青藏高原冻融侵蚀敏感性评价与分析   总被引:5,自引:3,他引:2  
冻融侵蚀是我国仅次于水蚀和风蚀的土壤侵蚀类型。青藏高原由于其海拔高、辐射强、气温低的特点,是我国冻融侵蚀较严重的区域。选择影响冻融侵蚀的5个主要因子:气温年较差、降水量、坡度、坡向、植被覆盖度进行定量研究,分析青藏高原冻融侵蚀敏感性强度及空间分布特征。结果表明:(1)青藏高原冻融侵蚀区面积为149.02×104 km2,占青藏高原总面积的62.20%;冻融侵蚀敏感区的面积为56.80×104 km2,中度及以上敏感区面积为27.39×104 km2,占冻融侵蚀敏感区面积的48.22%;(2)冻融侵蚀敏感性空间分布差异明显,中度以上敏感区主要分布在青藏高原南部和东南部、喀喇昆仑山、祁连山、横断山区等地区。  相似文献   

5.
华北平原新生界盖层地温梯度图及其简要说明   总被引:6,自引:1,他引:6       下载免费PDF全文
陈墨香  邓孝 《地质科学》1990,(3):269-277
本文报道新编比例尺为1:1500000的华北平原新生界盖层地温梯度图。该图以近4000口钻井的温度资料和对地温场控制因素的分析为基础,并结合地温场数学模拟计算结果编制而成。圈定全区地温梯度G>4℃/100m及大地热流q>62mw/m2的局部地热异常区44片,总面积为25000km2,为地热能勘探、开发远景规划提供了重要的科学依据。  相似文献   

6.
运用遥感(RS)与地理信息系统(GIS)技术, 结合波密县1960-2010年气象数据, 分析了西藏波密地区冰川的主要分布特征和典型大冰川1980-2010年的时空变化. 结果显示: 波密县共有冰川数量2 040条, 总面积为4 382.5 km2, 其中, 分布在海拔4 000~6 000 m的高山冰川总面积达4 086 km2, 占冰川总面积的93.2%; 南坡分布冰川1 504条, 面积3 180.04 km2, 分别占波密冰川总量的73.73%和72.56%, 而北坡占还不到三分之一. 提取1980、 1990、 2000和2010年4期面积大于20 km2的24条大冰川面积进行对比分析, 1980-2010年间波密县大冰川面积总体呈减小趋势, 由1980年的1 592.78 km2退缩至2010年1 567.04 km2, 共退缩了25.74 km2; 其中, 1980-1990年冰川变化贡献最大, 冰川面积退缩了16.62 km2, 占冰川总面积退缩量的64.6%. 波密县气象站数据显示, 50 a来冰川退缩主要受温度持续上升的影响, 降水量变化对冰川变化影响不大.  相似文献   

7.
林振  卢书强  梅军 《华南地质》2024,(1):152-161
本文以湖北省秭归县为研究区,选取高程、水系距离、道路距离、岩土体类型、坡向、坡度、土地覆盖类型、年降雨量等8个评价因子开展滑坡易发性评价工作,依据ArcGIS软件数据分析工具完成各评价因子相关性分析。对评价因子相关性值|r|>0.1的高程、坡向因子剔除,计算各因子信息量值。利用信息量模型进行滑坡易发性评价,将研究区划分为四个区域:(1)极高易发区,面积140.0864 km2,占研究区总面积6.18%,主要分布在长江及支流沿岸;(2)高易发区,面积1002.445 km2,占研究区总面积44.23%,主要呈带状分布在极高易发区两侧,部分位于两河口镇、磨坪乡周边区域;(3)中易发区,面积833.8711 km2,占研究区总面积36.79%,呈带状分布在极高易发区两侧,零散分布;(4)低易发区,面积290.2564 km2,占研究区总面积12.80%,多分布在高山人稀区域。本文研究结果能够较好地反映研究区滑坡灾害分布规律,可为秭归县防灾减灾工作提供依据。  相似文献   

8.
中国班公湖流域区冰川补充编目及冰川特征   总被引:1,自引:1,他引:0  
论述了中国班公湖流域区冰川补充编目的结果及冰川特征.1988年公布的中国班公湖流域区总共有冰川834条,冰川总面积642.77km2,冰储量为33.9246km3;经过补充编目,更正了以往部分简易目录后的冰川是959条,冰川总面积665.35km2,冰储量为39.2316km3.冰川数量增加的结果主要是利用小比例尺卫星相片编目时遗漏了面积≤1.00km2的小冰川所致.  相似文献   

9.
兰州马衔山多年冻土活动层厚度估算及影响因素分析   总被引:2,自引:2,他引:0  
马衔山残存的多年冻土被誉为黄土高原地区多年冻土的"活化石". 自1986年发现多年冻土存在至今, 多年冻土发生了严重的退化, 活动层厚度增大, 面积由原来的0.16 km2减少到现在的 0.134 km2. 本文基于马衔山多年冻土区的实际监测资料分析了气温、地表温度和N系数随时间变化特征以及活动层温度、土壤含水量的时空特征. 根据2010-2013年马衔山多年冻土区的日平均地表温度和土壤参数实测及实验室分析资料, 利用X-G算法模拟了马衔山多年冻土的冻融过程, 并模拟得到4年的活动层厚度均比实测值小, 这可能与活动层底部较高的未冻水含量有关. 然后进一步探讨了泥炭层和含水量对活动层厚度的影响, 泥炭层越厚, 其隔热作用越强, 活动层厚度越小; 反之, 活动层厚度越大; 含水量越高, 土壤的容积热容量越大, 活动层厚度越小; 反之, 活动层厚度越大.  相似文献   

10.
为研究山东省青州市表层土壤硒元素地球化学特征,在青州市按照平均5.2件/km2的密度采集了8 132件表层土壤样品,分析了硒、有机质、pH等指标。结果表明:青州市表层土壤硒含量范围在0.02~2.77 mg/kg,背景值为0.21 mg/kg(n=7 462)。研究区富硒土壤面积为140.56 km2,占研究区总面积的9.00%;足硒土壤面积为1 248.39 km2,占研究区总面积的79.93%;潜在硒不足土壤面积为148.45 km2,占研究区总面积的9.50%;硒缺乏土壤面积为24.52 km2,占研究区总面积的1.57%。不同的成土母质、土壤类型、地貌类型、土地利用类型区的表层土壤硒含量特征不同,寒武纪—奥陶纪地层成土母质区、钙质粗骨土分布区、溶蚀—切割中山地貌类型区、草地和林地土地利用类型区的表层土壤中硒相对富集。相关分析表明,研究区表层土壤中pH和硒含量无相关性,而有机质与硒含量呈显著正相关关系。  相似文献   

11.
热扩散系数是多年冻土对外界热扰动敏感程度的重要影响参数之一,也是寒区工程设计与建设的关键基础数据。基于瞬态平面热源法导热系数测试结果和质量加权法计算获取的比热容理论值,计算获得青藏工程走廊西大滩—唐古拉山沿线典型类别土样热扩散系数,分析对比了走廊带内冻融土热扩散系数的分布特征和参数影响规律,提出了基于经验拟合公式法和RBF神经网络方法的冻融土热扩散系数预测模型,并比较了不同预测模型的预测效果。研究结果表明:青藏工程走廊带内土的热扩散系数与粒径整体呈正相关性,融土热扩散系数按黏性土、粉土、全风化岩类、砂土及碎石土依次增大,冻土热扩散系数按黏性土、全风化岩类、粉土、碎石土及砂土依次增大;热扩散系数与容重及天然含水率相关性随土类及冻融状态差异明显,冻、融土热扩散系数呈显著正线性关系;以融土热扩散系数为拟合参数的冻土热扩散系数三元预测模型的预测精度明显高于二元经验公式;RBF神经网络模型在冻、融土热扩散系数预测中均具有最优的预测精度,为最佳预测模型。  相似文献   

12.
川西螺髻山清水沟保存着倒数第二次冰期(MIS 6)、末次冰期早期(MIS 4)和末次冰期晚期(MIS 2)较为完好的冰川沉积序列,该序列为螺髻山地区晚第四纪古环境重建提供了直接依据。基于野外地貌考察和冰川地貌特征确定出古冰川分布范围,计算古冰川物质平衡线高度(ELA),应用P-T模型和LR模型计算出各冰期时段的气温与降水。结果显示:清水沟MIS 6、MIS 4和MIS 2的冰川面积分别为3.44 km2、2.22 km2和1.20 km2,冰川体积分别为0.19 km3、0.12 km3和0.07 km3。各期次的古ELA分别为3 132 m、3 776 m和3 927 m,相对于现代ELA分别下降了1 716 m、1 071 m和920 m。冰川规模受气温和降水的共同影响,MIS 6气温大幅下降(8~12 ℃)是导致该阶段冰川规模最大的原因;MIS 4降水为现在的80%左右,而气温下降幅度(6~7 ℃)小于倒数第二次冰期,冰川规模小于倒数第二次冰期;MIS 2降水仅为现在的60%~80%,降温幅度(4~8 ℃)也不大,因此该阶段冰川规模最小。  相似文献   

13.
1956—2017年河西内流区冰川资源时空变化特征   总被引:7,自引:6,他引:1  
基于修订后的河西内流区第一、 第二次冰川编目数据及2016—2017年Landsat OLI遥感影像, 对河西内流区1956—2017年冰川时空变化特征进行分析。结果表明: ①河西内流区现有冰川1 769条, 面积976.59 km2, 冰储量约49.82 km3。冰川面积以介于0.1 ~ 10 km2的冰川为主, 数量以<0.5 km2的冰川为主。祁连山是该区域冰川集中分布区, 其冰川数量、 面积和冰储量分别占该区域冰川相应总量的98.47%、 97.52%和97.53%。②疏勒河流域(5Y44)冰川数量、 面积及冰储量最多(最大), 冰川平均面积为0.81 km2, 石羊河流域(5Y41)最少(最小)。从四级流域来看, 宁掌等流域(5Y445)冰川最为发育, 冰川数量、 面积及储量均最大, 宰尔莫合流域(5Y446)冰川平均面积最大(1.80 km2), 夹道沟-潘家河流域(5Y422)最小, 仅有0.05 km2。③近60年河西内流区冰川数量减少556条, 面积减少417.85 km2, 冰储量损失20.16 km3。面积介于0.1 ~ 0.5 km2之间的冰川数量与面积减少最多(457条和 -117.49 km2), 海拔4 400 ~ 5 400 m区间是冰川面积集中退缩的区域(98.55%), 北朝向冰川面积减少最多(-219.92 km2)且冰川退缩速率最快(-3.61 km2·a-1)。④1956—2017年河西内流区各流域冰川面积均呈退缩态势, 区内冰川变化呈自西向东逐渐加快的趋势, 但有3条冰川在1986—2017年出现不同程度的前进, 气温升高是该区域冰川退缩的主要原因。  相似文献   

14.
祁连山冰川融水是维系我国西北地区生态平衡的重要因素。为评估祁连山冰川在全球气候变暖背景下的状态, 利用Landsat-TM、 ETM+、 OLI等遥感影像, 基于波段比值阈值法提取1987 - 2018年共计7期冰川边界进行时序变化分析。结果显示: 近31年来祁连山冰川面积从2 080.39 km2退缩到1 442.09 km2, 年均退缩率达0.99%, 相比1956 - 1990年间的退缩率(0.58%)大幅增加; 近31年来冰川物质平衡线高度稳步上升; 冰川主要分布在海拔4 700 ~ 5 100 m之间, 冰川退缩随海拔降低而增加; 约93%的冰川的面积小于2.0 km2, 小于0.1 km2的冰川的总数和总面积呈增加态势; 0.5 ~ 1.0 km2的冰川退缩最快, 年均退缩率达1.53%, 而大于10.0 km2的冰川退缩最慢, 年均退缩率为0.59%; 祁连山冰川退缩主要由夏季均温升高引起, 且最近十年间冰川呈现出加速退缩的态势。  相似文献   

15.
张越  许向科  孙雅晴 《冰川冻土》2022,44(4):1248-1259
末次冰盛期(LGM)时全球大范围降温,青藏高原冰川大规模扩张,重建LGM时期古冰川规模对认识高原冰川水资源演化及古气候条件有重要的科学意义。根据青藏高原东南巴松措流域及派山谷两地的冰川地貌及其10Be暴露年代数据,本文应用冰川纵剖面模型定量重建了两地冰川在LGM时期的范围、冰储量和平衡线高度(ELA)等参数,并通过冰川气候模型恢复了LGM时的气候条件。结果表明:巴松措流域LGM时期的冰川面积约为982.3km2,是现代冰川面积的4.5倍,冰储量约为274.4km3;派山谷无现代冰川分布,LGM时期的冰川面积达5.76km2,冰储量约为0.51km3;LGM时期两冰川的平衡线高度分别为4 460~4 547m和3 569~3 694m,与现代冰川相比分别降低了535m和1 034~1 184m。在降水减少60%的情况下,考虑LGM以来的构造剥蚀对平衡线高度变化的影响,LGM时期巴松措流域和派山谷冰川的夏季平均气温分别比现在低约2.96~4.89℃和5.09~6.99℃。  相似文献   

16.
杜军  牛晓俊  袁雷  次旺顿珠 《冰川冻土》2020,42(3):1017-1026
利用羌塘国家级自然保护区边缘5个气象站1971 - 2017年逐月平均气温、 平均最高气温、 平均最低气温、 降水量和逐年最大冻土深度等气象资料, 以及卫星遥感资料, 采用线性回归、 相关系数等方法, 分析了自然保护区气候(气温、 降水等)、 水体(湖泊、 冰川)和植被等生态环境因子的变化。结果表明: 近47年自然保护区年平均气温以0.46 ℃·(10a)-1的速率显著升高, 明显高于同期全球和亚洲地表温度的升温率。四季平均气温升温率为0.37 ~ 0.55 ℃·(10a)-1, 升幅在冬季最大、 夏季最小。年降水量呈明显的增加趋势, 增幅为11.0 mm·(10a)-1, 主要表现在春、 夏两季。近43年(1975 - 2017年)色林错面积呈显著增加趋势, 平均增长率为38.48 km2·a-1。1973 - 2017年, 普若岗日冰川面积整体上趋于减少, 平均每年减少2.11 km2; 自然保护区年最大冻土深度变化率为-35.7 cm·(10a)-1。1999 - 2013年保护区NDVI增幅达25.3%, 平均每10年增加0.0184, 植被覆盖度明显增加。总之, 近47年自然保护区表现为气候暖湿化、 冰川退缩、 湖泊扩涨、 冻土退化、 植被覆盖增加的变化特征, 而冰川变化引发的水资源时空分布和水循环过程的变化, 无疑将给高原社会经济发展带来深刻影响。  相似文献   

17.
王生廷  盛煜  吴吉春  李静  黄龙 《冰川冻土》2020,42(4):1186-1194
多年冻土地下冰作为一种特殊的存在形式, 对高原生态、 冻土环境以及冻土工程建设等都有深刻影响, 但是目前对于青藏高原地下冰储量的研究很少。以祁连山中东部大通河源区为例, 基于源区地貌分类、 冻土分布等研究, 利用源区多年冻土钻孔数据和公路地质勘测资料, 在水平和垂直两个方向上估算了多年冻土层地下冰储量。计算表明: 大通河源区多年冻土层2.5~10.0 m深度范围内地下冰总储量为(11.70±7.24) km3, 单位体积含冰量为(0.396±0.245) m3。其中冰缘作用丘陵和冰缘湖沼平原等地貌区含冰量较高, 而冰缘作用台地、 冲积洪积平原则含冰量较低。在垂向上多年冻土上限附近含冰量最高, 并随深度增大而缓慢减小。随着未来气候变暖、 多年冻土退化以及环境变化, 准确把握多年冻土区地下冰储量和分布特点对生态、 水文地质、 地质灾害预估、 冻土工程建设具有深远意义。  相似文献   

18.
基于Landsat系列卫星遥感影像、SRTM DEM和TanDEM-X DEM对喀喇昆仑山中部Shigar流域不同类型冰川的面积变化、物质平衡进行了分析.结果表明:1993—2016年间Shigar流域内有25条跃动冰川(面积增加1.30 km2),68条前进冰川(面积增加0.86 km2),50条退缩冰川(面积减少3...  相似文献   

19.
咸海是亚洲仅次于里海的第二大内陆咸水湖, 20世纪60年代以来湖泊面积急剧萎缩。基于1960 - 2018年咸海的面积数据、 CRU气温和降水数据以及咸海流域灌溉面积、 水库容量等资料, 定量分析了1960年以来咸海湖泊面积的变化情况, 并从气候变化与人类活动两方面探究了咸海面积变化的主要影响因素。结果表明: 1960 - 2018年咸海的面积由6.85×104 km2持续萎缩至(8.32±0.19)×103 km2, 共减少了(6.02±0.02)×104 km2(约87.85%), 其中1960 - 2009年面积萎缩了(5.94±0.02)×104 km2(约86.77%), 而在2009 - 2018年其面积萎缩速率明显放缓, 减少了740.04 km2(约8.17%)。统计结果显示, 1960年以来强烈的人类活动(主要表现为灌溉用水和水库储水量的持续增加)是导致咸海面积急剧萎缩的主要因素, 其对咸海面积变化的影响远大于气候变化。在中亚地区气候继续向暖湿变化的背景下, 咸海流域应尽快调整以农业灌溉为主的用水结构, 否则在上游冰川融水达到峰值后, 咸海可能面临干涸的危险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号