首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SMILE卫星载荷宽视场软X射线成像仪设计与仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
SMILE卫星载荷宽视场软X射线成像仪(Soft X-ray Imager,SXI)采用Angel型龙虾眼光学成像系统的设计方案,具有大视场,高分辨率质量轻的优点.本文中对宽视场软X射线成像仪进行初步设计,包括成像镜头支撑结构设计,可见光/极紫外滤光片的选取,镜头遮光罩和高能粒子屏蔽门设计.利用模拟仿真程序对成像仪的点扩散函数,有效面积以及灵敏度进行研究.该成像仪用于太阳风与地球磁层区域进行全景成像.  相似文献   

2.
太阳风-磁层耦合和地球空间的动力学过程是空间天气的基本驱动要素,在系统尺度上认知这些过程对于空间物理和空间天气的研究至关重要.太阳风电荷交换(solar wind charge exchange, SWCX)机制的提出,为磁层大尺度特性研究提供了一种全新的探测方式,即地球磁层的软X射线成像. SWCX发生在太阳风中的高价态重离子(例如C6+、N7+、O7+、O8+等)和中性原子或分子(例如地球空间中的中性氢原子,日球层中的中性氢原子和氦原子,彗星和其它行星上的水分子、CO2等)发生碰撞时.太阳风离子得到一个或多个电子后进入激发态,随后在回到基态的过程中释放出一个或多个软X射线波段的光子.地球磁层的SWCX软X射线辐射主要发生在日侧的磁鞘和极尖区,因此利用软X射线大范围成像技术可以对磁层进行远距离全景成像,从而在大尺度上认知太阳风-磁层相互作用的基本模式.在此背景下,中欧联合空间科学卫星计划太阳风-磁层相互作用全景成像卫星(Solar wind Magnetosphere Ion...  相似文献   

3.
极尖区是太阳风进入磁层的一个重要窗口,极尖区密度是反映这一物理过程的重要参量,通常情况下极尖区密度约为1~10 cm~(-3),但有时卫星会观测到密度大于40 cm~(-3)的极尖区,本文称之为高密度极尖区.我们分析了Cluster卫星2001—2009年的观测数据,在470个极尖区穿越中找到28个高密度极尖区穿越事件并进行了统计研究,分析了高密度极尖区事件的形成原因,进而讨论了太阳风高效地进入极尖区的外部条件.结果表明:距正午的距离(|MLT-12|)较小,太阳风的密度高,低纬有磁层顶磁重联发生以及正偶极倾角都是观测到高密度极尖区事件的有利条件,并且当同时满足上述4个条件时,高密度极尖区事件发生率为100%;而低纬磁层顶磁重联以及大的正偶极倾角被认为是太阳风高效地进入极尖区的重要条件.这些研究结果有助于我们更进一步地理解太阳风进入极尖区的物理机制.  相似文献   

4.
研究了Polar卫星的极区电离层X射线成像仪(PIXIE)得到的极光X射线成像强度AI(Auroral Intensity)与磁层亚暴指数的相关关系.本文发现,在所选取的1997年至2001年的部分数据中,从完整的X射线图像得到的极光X射线总强度和AE指数有很好的线性相关关系,在全部83组数据中有566%的数据的线性相关系数都在060以上(相关系数最大为097).所以本文认为极光X射线总强度可以作为新的磁层亚暴卫星实时监测指数.  相似文献   

5.
主要分析了WIND飞船2004年11月9日探测的磁云边界层引起的大尺度地球磁层活动.磁层响应主要包括以下3个方面:(1)磁云边界层内本身持续较强南向磁场驱动了一个强磁暴的主相.(2)由于磁云边界层内部较强南向磁场持续一段时间后发生向北偏转触发了一个典型磁层亚暴.文中详细分析了亚暴膨胀相发生时夜侧磁层各区域的观测现象,包括极光观测、高纬地磁湾扰、地球同步轨道无色散粒子注入现象、Pi2脉动突然增强以及等离子体片偶极化现象等.(3)磁云边界层和前面鞘区组成一个动压增强区,此动压增强区强烈压缩磁层,致使磁层顶进入地球同步轨道以内;当磁云边界层扫过磁层时,位于向阳侧地球同步轨道上的两颗GOES卫星大部分时间位于磁层磁鞘中,以致很长时间内直接暴露在太阳风中.利用Shue(1998)模型计算得到当磁云边界层扫过磁层时磁层顶日下点的位置被压缩至距地心最近距离为5.1RE,磁云边界层的强动压结构以及强间断面决定了磁云边界层对磁层的强压缩效应.强动压结构、多个强间断结构以及持续较长时间的强南向磁场是许多磁云边界层的共性,这里以此磁云边界层事件为例分析了磁云边界层的地球磁层响应.  相似文献   

6.
极尖区是太阳风进入磁层的一个重要窗口,极尖区密度是反映这一物理过程的重要参量,通常情况下极尖区密度约为1~10 cm-3,但有时卫星会观测到密度大于40 cm-3的极尖区,本文称之为高密度极尖区.我们分析了Cluster卫星2001—2009年的观测数据,在470个极尖区穿越中找到28个高密度极尖区穿越事件并进行了统计研究,分析了高密度极尖区事件的形成原因,进而讨论了太阳风高效地进入极尖区的外部条件.结果表明:距正午的距离(|MLT-12|)较小,太阳风的密度高,低纬有磁层顶磁重联发生以及正偶极倾角都是观测到高密度极尖区事件的有利条件,并且当同时满足上述4个条件时,高密度极尖区事件发生率为100%;而低纬磁层顶磁重联以及大的正偶极倾角被认为是太阳风高效地进入极尖区的重要条件.这些研究结果有助于我们更进一步地理解太阳风进入极尖区的物理机制.  相似文献   

7.
IMF北向时磁层顶重联的模拟研究   总被引:1,自引:0,他引:1  
本文基于自己开发的全球三维磁层模型,模拟研究了IMF(Interplanetary Magnetic Field)北向时磁层顶重联及磁尾结构.结果发现磁层顶附近存在两种典型的重联过程:一是高纬极尖区IMF与地球磁场的重联,这与空间观测证据和前人的模拟结果是一致的;二是重联后一端在太阳风中另一端与地球相连的磁力线在向磁尾运动中,会发生弯曲、拖曳,在磁尾晨昏侧低纬区域可与尾瓣开放磁力线满足重联条件而再次发生重联.我们认为前一重联会使磁尾等离子片产生与IMF时钟角方向相反的旋转;而后者可重新形成闭合磁力线,可能是LLBL(Low Latitude Boundary Layer)形成的重要原因.  相似文献   

8.
王明  吕建永  李刚 《地球物理学报》2014,57(11):3804-3811
利用全球磁流体力学(MHD)的模拟结果,研究了太阳风压力系数与上游太阳风参数和日下点磁层顶张角的相关性.在识别出日下点附近磁层顶位置后,通过拟合得到日下点附近的磁层顶张角.在考虑上游太阳风中的磁压和热压以及磁层顶外侧的太阳风动压的情况下,计算了太阳风压力系数.通过分析行星际磁场不同方向时太阳风动压在日地连线上与磁压和热压的转化关系,详细研究了太阳风参数和日下点磁层顶张角对太阳风压力系数的影响,得到以下相关结论:(1) 在北向行星际磁场较大(Bz≥5 nT)时,磁层顶外侧磁压占主导,南向行星际磁场时磁层顶外侧热压占主导;(2) 太阳风压力系数随着行星际磁场的增大而增大,随着行星际磁场时钟角的增大而减小;并且在行星际磁场大小和其他太阳风条件相同时,北向行星际磁场时的太阳风压力系数要大于南向行星际磁场时的;北向行星际磁场时,太阳风压力系数随着太阳风动压的增大而减小,南向行星际磁场时,太阳风压力系数随着太阳风动压的增大而增大;以上结论是对观测结果的扩展;(3) 最后,我们还发现太阳风压力系数随着日下点磁层顶张角的增大而增大.  相似文献   

9.
地基观测的夜侧极光对行星际激波的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
行星际激波与地球磁层相互作用通常会导致日侧极光活动增强,随后沿着极光卵的晨昏两侧向夜侧扩展的激波极光.行星际激波也可能直接导致夜侧扇区极光活动增强,甚至沉降粒子能通量的数量级可以与典型亚暴相比拟.本文首次利用我国南极中山站和北极黄河站连续多年积累的极光观测数据,对行星际激波与地球磁层相互作用期间地面台站在夜侧扇区(18—06MLT)观测的极光响应进行了分析.对18个极光观测事件的分析结果表明:行星际激波与磁层相互作用可以在夜侧触发极光爆发和极光微弱增强或静态无变化事件;太阳风-磁层能量耦合的效率以及磁层空间的稳定性决定着行星际激波能否触发极光爆发.  相似文献   

10.
采用等效电网络模型,研究了太阳风直接驱动和装卸载相结合的磁层暴与磁层亚暴全球过程和有关电流系统的时间演化,并与观测资料作了比较.电网络中诸参数基于观测事实确定.  相似文献   

11.
采用等效电网络模型,研究了太阳风直接驱动和装卸载相结合的磁层暴与磁层亚暴全球过程和有关电流系统的时间演化,并与观测资料作了比较.电网络中诸参数基于观测事实确定.  相似文献   

12.
磁层顶压缩事件的磁场分析   总被引:2,自引:0,他引:2       下载免费PDF全文
向日面磁层顶在平静太阳风条件下,处于10RE(RE为地球半径)左右.但在异常的太阳风条件下,即南向行星际磁场很强和(或)太阳风的动压很大时,会被压缩,甚至到达同步轨道附近.集中分析2001年4月11日的磁暴事件,研究当磁层顶发生强烈压缩以后。在地球空间和地面上产生的磁场影响.磁层顶位形选取Shue(1998)模型计算.当把计算结果与GOESl0卫星的观测数据对比时发现:磁层顶在强的太阳风条件下的确会被压缩到同步轨道以内.Shue(1998)模型的预测基本正确,通常的漏报可能是由于预报的位置误差所致.实际磁层顶电流片的位置和强度与我们假设的理想磁层顶间断面计算结果基本吻合.在分析大磁暴过程时,磁层顶压缩使磁层顶电流对于中低纬度地磁场扰动有突出的贡献,在2001年4月事件中,这个贡献可以大于50nT,占主相的1/6左右.这一贡献可以使Dst指数产生相应的误差.  相似文献   

13.
本文首次利用完全相同两颗卫星(CLUSTER C1和C3)的数据对地球激波前兆区太阳风的减速和偏转特性进行了统计研究.结果表明,在激波前兆坐标系中,太阳风减小的速度随观测点到激波的距离DBS增大而减小,随行星际磁场与激波法向夹角θBN增大也减小,在ULF波动区深度DWS小于6Re(Re为地球半径)的范围内最为显著;伴随着太阳风减速的另外一个现象——太阳风的偏转,也存在相似的规律.其最大减速和最大偏转角度分别为10 km/s和3°.太阳风减速和偏转,以及随之变化的太阳风动压,可能会引起地球磁层顶位置和形状发生改变,同时也为激波前兆区弥散(diffuse)离子的起源及加热提供了一种可能的机制.  相似文献   

14.
磁层亚暴和磁暴是太阳风—行星磁层耦合过程中发生的能量存储和爆发式释放现象,伴随着复杂的等离子体动力学,对磁层以及整个行星都具有强烈的影响.它们的发生不仅会通过粒子沉降引发绚丽多彩的极光,还可以通过电磁场影响人类以及其他生物的生产生活.对地球上的亚暴和磁暴现象的描述与研究至今已有近百年的历史,然而对其他行星上的亚暴以及磁...  相似文献   

15.
主要分析了WIND飞船2004年11月9日探测的磁云边界层引起的大尺度地球磁层活动.磁层响应主要包括以下3个方面:(1)磁云边界层内本身持续较强南向磁场驱动了一个强磁暴的主相.(2)由于磁云边界层内部较强南向磁场持续一段时间后发生向北偏转触发了一个典型磁层亚暴.文中详细分析了亚暴膨胀相发生时夜侧磁层各区域的观测现象,包括极光观测、高纬地磁湾扰、地球同步轨道无色散粒子注入现荆、Pi2脉动突然增强以及等离子体片偶极化现象等.(3)磁云边界层和前面鞘区组成一个动压增强区,此动压增强区强烈压缩磁层,致使磁层顶进入地球同步轨道以内;当磁云边界层扫过磁层时,位于向阳侧地球同步轨道上的两颗GOES卫星大部分时间位于磁层磁鞘中,以致很长时间内直接暴露在太阳风中.利用Shue(1998)模型计算得到当磁云边界层扫过磁层时磁层顶日下点的位置被压缩至距地心最近距离为5.1RE,磁云边界层的强动压结构以及强间断面决定了磁云边界层对磁层的强压缩效应.强动压结构、多个强间断结构以及持续较长时间的强南向磁场是许多磁云边界层的共性,这里以此磁云边界层事件为例分析了磁云边界层的地球磁层响应.  相似文献   

16.
太阳X-EUV成像望远镜   总被引:10,自引:0,他引:10       下载免费PDF全文
太阳X_EUV成像望远镜用来监测和预报影响空间天气变化的太阳活动,专门服务于空间天气预报研究. 望远镜工作在4~100?的X射线波段和195?极紫外谱段,视场角45′,角度分辨5″,提供全日面、高分辨的成像观测. 文中分析了太阳X、EUV波段的成像观测应用,介绍了X_EUV望远镜的基本设计,分析了望远镜对不同温度日冕等离子体的敏感性、对不同太阳活动现象的响应及反演日冕等离子体参数过滤片的组合利用. 太阳X_EUV成像望远镜集成了掠入射望远镜和正入射望远镜两套系统,扩展了单一X射线望远镜的成像功能,能够观测更多的太阳爆发先兆现象或者伴生现象,是目前国际上同类仪器中最新的太阳成像监测仪器.  相似文献   

17.
地球磁层中的电场是研究磁层物理的重要参数,目前常用的对流电场有均匀晨昏电场和投影电场.电离层电场可以看做磁层电场沿磁力线在电离层的投影,本文选取的电离层电场模型为Weimer(2001模式)电场.利用T96磁场模式,沿磁力线将电离层电场投影到磁层空间,得到一个新的磁层电场模式,并讨论了磁暴、行星际磁场(IMF)、太阳风参数和亚暴等对磁层电场的影响.利用该模型计算的电场结果与卫星探测结果相符.  相似文献   

18.
综合分析EISCAT雷达与卫星当地测量数据,并利用磁层磁场模式对磁力线进行追踪,研究了发生在极光椭圆朝极盖边界附近电离层中,一例反常的背离太阳流动的强等离子体对流事件,及相关的太阳风-磁层-电离层耦合过程.结果表明,磁暴期间IMFBz指向南时观测到这一反常高速对流,及其相应的等离子体性态特征,很可能是向阳侧磁层顶磁重联过程在电离层中的印记.  相似文献   

19.
为了研究地磁活动指数Dst受太阳风参数影响,包括行星际磁场(IMF)南向分量Bst、太阳风速度V?和太阳风-磁层发电机电动势U调制的机制,应用太阳风-磁层-电离层输入-输出[I(t)-O(t)]电网络模型,对磁层亚暴与磁层暴过程中,Bz(t)-Dst、V-a(t)-Dst和U(t)-Dst的激励-响应特性进行模拟。研究表明,Bz是形成亚暴与磁层暴的前提条件,Vst是形成亚暴与磁层暴的充分条件,二者统一于电动势Ust研究结果与观测结果一致。  相似文献   

20.
爆发流(Busty Bulk Flows)事件是发生在地球磁层里的等离子体输运现象,磁泡模型能很好地解释这一过程.现有的理论和观测事实已给出了对磁泡在跨尾方向上的尺度以及其他重要的物理参数的估计,但由于观测手段的限制这些参数并不十分精确,而只是个数值域.本文从最新的Tsyganenko磁层模型出发,利用磁泡在极光区根部的位置参数和自编的磁力线跟踪程序,通过映射给出了对应的磁泡在磁赤道面跨尾方向上的尺度.计算结果与理论预计和观测事实相符.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号