首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siderite microconcretions in the glauconite-bearing clayey-silty rock member of the lower sub-formation of the Khaipakh Formation (Middle Riphean, Olenek Uplift) are scrutinized for the first time. In two Khorbusuonka River sections located with a spacing of 12 km, the microconcretions occur as lenses and interlayers. Together with glauconitites, they serve as a distinct marker horizon of this stratigraphic interval. Their structures, morphologies, diffraction characteristics, chemical compositions, and isotope data are considered. They were examined comprehensively with modern investigation methods (X-ray diffraction, scanning electron microscopy with the application of local microprobe analysis, and others). Structural-morphological types of microconcretions are identified. Calculation of the chemical composition of carbonates based on numerous microprobe analyses made it possible to reveal different degrees of mineral heterogeneity in each type in terms of the distribution of macro- and microlevel isomorphous trace-elements and to refine the character of their secondary alterations at different stages of lithogenesis. The results of oxygen and hydrogen isotopic studies are presented for algal dolomites and limestones from the Middle and Lower Riphean sections in the Olenek Uplift (Debengda, Arymass, and Kyutingda formations). They demonstrated that siderites are similar to limestones and dolomites in terms of the oxygen isotopic composition (δ18O = 17.6–24.8, δ18Oav = 20.0 ± 2.4‰), but are marked by low δ13C values (from ?6.3 to ?12.0‰ (δ13Cav = ?8.6 ± 2.1‰), suggesting the formation of microconcretions during early diagenesis. Siderite microconcretions were formed in the clayey-silty sediment slightly after glauconite, whose grains could serve as crystallization centers and (or) be entrapped during the growth of separate microcrystals. The role of catalyzers during the formation of both glauconite and siderite was played by bacterial communities, whose poorly preserved remnants have been detected not only in the studied member of the lower Khaipakh subformation, but also above and below the section. Separate types of microconcretion could be formed during the replacement of oncolites by siderite.  相似文献   

2.
This work presents results of the complex mineralogical, geochemical, and isotope-geochronological investigation of globular dioctahedral 2: 1 phyllosilicates (GPS) of the illite–glauconite series from the Riphean sequences of the Olenek Uplift. It is established that GPS (glauconite, Al-glauconite, Fe-illite) in deposits of the Arymass, Debengda, and Khaipakh formations are represented by mixed-layer varieties of two types: (1) with relatively low (<10%) and (2) higher (10–20%) contents of expandable layers. Among the mixed-layer varieties are those with disordered alternation of micaceous and smectite layers (R = 0), as well as with tendency to ordering (R ≥ 1). The parameter b of an elementary cell of minerals varies from 9.18 to 9.72 Å. The Rb–Sr age dating of GPS was first carried out in combination with the calculation of theoretical pattern of the cation distribution in the mineral structure and comparison of the calculation results obtained with the Mössbauer and IR spectroscopy data. This approach is based on the assumption that development and evolution of isotope systems in GPS are synchronous with the evolution of the crystalline structure of the mineral at various stages of the geological and geochemical history of the development of sedimentary units. Analysis of the obtained data allows us to state that the structural features of the Riphean GPS from the Olenek section reflect the early diagenetic stages of the formation of the minerals studied. The 87Sr/86Sr initial ratios in the studied sediments are consistent with the range of variations in this ratio in the Middle Riphean Ocean (0.7049–0.7061). The Rb–Sr and K–Ar ages of the GPS of the Arymass (1305 ± 8 and 1302 Ma, respectively), Debengda (1265 ± 12 and 1284 ± 22 Ma), and Khaipakh (1172 ± 18 and 1112 ± 24 Ma) formations in the Olenek Uplift section are close to the accumulation time of corresponding deposits and, correspondingly, have significance for stratigraphic correlations.  相似文献   

3.
Silicified shallow-water marine carbonate deposits of the Proterozoic Debengda Formation (the Olenek Uplift, northeastern Siberia) contain well preserved microfossils. One or two distinct assemblages consists only of filamentous Siphonophycus microfossils, which are presumably the extracellular sheaths of hormogonium cyanobacteria. The other is dominated by coccoidal microfossils, first by the entophysalidacean cyanobacterium Eoentophysalis. The coccoidal assemblage was recognized in the layered carbonate precipitate structures of a superficially stromatolite appearance. Despite its simple composition, the microfossil assemblage supports the generally accepted Mesoproterozoic (middle Riphean) age of the Debengda Formation. This conclusion corresponds to the available data on isotopic geochronology, and to the composition of columnar stromatolites from the Dehengda Formation. Both the structural features and carbon isotopic composition of its rocks are comparable to those of rocks of known Mesoproterozoic age, but differ from the characteristics of definitely Neoproterozoic deposits.  相似文献   

4.
Structures and textures of the peloidal wackestones, as well as size, shape, and composition of peloidal grains, from the Mesoproterozoic (Middle Riphean) Sukhaya Tunguska carbonate platform in the Turukhansk Uplift (Siberia) are considered. It is shown that these grains formed in the course of diagenesis were closely associated with the microsparitic replacement and the formation of molar tooth (MT) structures. Diagenetic transformations of rocks were related to the activity of anaerobic microbial communities inside the buried carbonate silt layers. The microbial activity during diagenesis was governed by the carbonate sediment composition and conservation mechanism of the high-molecular organic matter of primary producers therein, since this organic matter was the nutritious substrate for the primary anaerobe communities.  相似文献   

5.
It is shown that globular phyllosilicates subjected to deep categenesis are abundant in Middle Riphean sandstones and siltstones (lower subformation of the Arymas Formation) of the Olenek High. Their detailed structural-crystallochemical characteristics are given. Secondary alterations of globules and the associated pelletal minerals at different stages of lithogenesis (illitization, chloritization, ferrugination, disintegration, and so on) are considered. Structural-crystallochemical characteristics of Fe-illite and Fe2+-Mg-chlorite in globules, pellets, separate clayey strata among glauconite-bearing sandstones and siltstones (hereafter, sandy-silty rocks), and mudstone interlayers are also presented. Possible mechanisms of the formation of these minerals are discussed.  相似文献   

6.
Studied assemblages of diverse organic-walled microfossils separated from the Arymas and Debengda formations of the Olenek Uplift include several paleobiological groups of microorganisms. Sufficiently large morphotypes of the first group are identified with remains of cyanobacteria. Morphotypes of variable spiral structure, which dwelt in association or in symbiosis with cyanobionts, are attributed to the same bacterial community. The other group includes a series of different acritarch genera whose characters suggest their affinity with green algae of the order Desmidiales. It is very likely that this group coexisted on siliciclastic shoals with large ancestral forms of the present-day brown algae. Several microfossil taxa have been known before from the Neoproterozoic deposits only. With due regard for the relatively gradual accumulation of sedimentary succession lacking large hiatuses and for the regular series of K-Ar dates characterizing three Riphean formations of the Olenek Uplift, it is possible to suggest that there was the Arymas-Debengda-Khaipakh cycle of long-lasted, almost uninterrupted sedimentation within the time span of 1250–900 Ma. It is also admissible that age ranges of some Late Precambrian microfossils are much larger than their distribution intervals postulated formerly.  相似文献   

7.
Previously published and new data on secondary transformations of the globular and platy phyllosilicates of the glauconite–illite series from the Upper Proterozoic terrigenous rocks of the Olenek and Anabar uplifts (East Siberia), Srednii Peninsula (Murmansk coast), and Vendian–Cambrian boundary rocks of the Podolian Dniester area (Ukraine) are generalized for the first time. Plastic deformation, aluminization, chloritization, berthierinization, as well as replacement of phyllosilicates of different morphology by corrensite- chlorite and pyrite at different lithogenesis stages, are considered and lithological-mineralogical characteristics of the glauconite-bearing rocks are reported. The structural, crystal-chemical, genetic, and isotopegeochronological features of di- and trioctahedral phyllosilicates are discussed.  相似文献   

8.
It is shown that glauconite-bearing interbeds are widespread in the layer-by-layer studied sections on the Sea of Okhotsk coast (Mainach section) and Kheisliveem River valley (Kavran section), the volcanoterrigenous rocks of the Kovachin, Amanin, and Gakkhin formations of the Paleogene in western Kamchatka (Upper Eocene-Lower Oligocene boundary beds). Detailed mineralogical and structural-crystallochemical characteristics of glauconite from the Amanin Formation are presented. It is suggested that such glauconite should not be used for geochronological purposes.Some specific features of glauconite formation, particularly, the preservation of specific morphological forms at high accumulation rates of volcano-terrigenous rocks, are discussed. Possibility of the formation of glauconite with the active influence of bacterial metabolism is considered.  相似文献   

9.
Results of the study of noble metal specialization of Lower and Middle Riphean terrigenous rocks in the Bashkir Anticlinorium (South Urals) are reported. The study revealed their genetic differences in the relatively unaltered, i.e., “background” terrigenous rocks in type sections of the Burzyan and Yurmatau groups and in sedimentary rocks of the same stratigraphic levels from tectonic zones subjected to local dynamothermal metamorphism of the greenschist facies and intruded by mafic rocks. It has been established that Ru serves as a geochemical marker of the impact of magmatic processes on sedimentary rocks and the redistribution of noble metals during metamorphism and local metasomatism. A generalized model is proposed for the formation of noble metal geochemical specialization of Lower and Middle Riphean terrigenous rocks in the South Urals.  相似文献   

10.
The paper presents a novel method for determining the crystal-chemical heterogeneity of finely dispersed dioctahedral 2: 1 mica mineral phases based on the modeling of their powder diffraction patterns. We used three samples, which were taken from Lower-Middle Riphean rock sections of the Anabar and Olenek uplifts in northern Siberia, and one sample from the Upper Riphean Inzer Formation in the southern Urals. Choice of globular samples was determined by contrast features of their chemical composition and different lithological types of the host terrigenous rocks that are commonly transformed at the level of deep catagenesis.Based on structural formulas, unit cell parameters, and coordinates of atoms occupying the cells, we modeled powder diffractograms that made it possible to determine the sizes of coherent scattering domains and probability parameters, which characterize the type, content, and distribution of stacking faults in each of the studied samples. The modeling results demonstrated that each sample represents a physical mixture of individual micaceous phases of different compositions. The paper discusses scales and modes of the crystalchemical heterogeneity of micaceous varieties, which make up globules in the coarse- and fine-grained terrigenous sediments, as well as their various specific crystal-chemical characteristics. The probable physicochemical settings, which were responsible for specific features of the structural and crystal-chemical heterogeneity of micaceous varieties in each of the studied four samples, are also discussed.  相似文献   

11.
The detailed mineralogical and structural-crystal-chemical characteristics are reported for the first time for glauconite grains extracted from the fine-platy silty-sandy dolomites at the roof of the lower subformation of the Yusmastakh Formation (Riphean, Anabar Uplift, North Siberia). Based on the complex study (X-ray diffraction, classical chemical analysis, microprobe analysis, IR-spectroscopy, thermogravimetric analysis, scanning electron microscopy with microprobe analysis, and Mössbauer spectroscopy), it was demonstrated that the studied glauconite sample is characterized by unique chemical and structural heterogeneity.The mineral structure consists of micaceous (90%), smectite (6%), and di-trioctahedral chlorite (4%) layers. Mica is classed with Al-glauconite (Al > Fe3+) with elevated Mg content. The elevated Mg mole fraction of the mineral is caused by the presence of Mg-bearing brucite-type interlayers of di-trioctahedral chlorite and the high Mg content in the octahedral sheets of 2: 1 layers. It was first discovered that glauconites are characterized by the heterogeneous distribution of cations over the available trans- and cis-octahedra due to the coexistence of trans- and cis-vacant octahedra and small trioctahedral clusters in octahedral sheets. The distribution of isomorphic cations over the accessible octahedral sites is also heterogeneous due to the tendency of Fe, Mg and Al, Mg cations to segregation and formation of corresponding domains.It was found that structure of the studied glauconite has a specific stacking defect: in addition to the predominant subsequent layers of similar azimuthal orientation according to 1M type (~77%), some layer fragments are rotated at 180° (~15%) and ±120° (8%). The structural-crystal-chemical heterogeneity of the mineral is explained by the fact that its microcrystals grew in the dolomitic sediment under nonequilibrium conditions of the reduction zone of a shallow-water basin with a sufficiently high content of Mg cations, which significantly contributed to the glauconite formation.  相似文献   

12.
In the type sections of the Riphean within the Bashkirian mega-anticlinorium (Southern Urals), the Mashak Formation represents a basal unit of the Middle Riphean erathem. The formation comprises throughout its area of distribution the alternation of volcanic, volcano-sedimentary, and sedimentary sequences and is divided into the lower, middle, and upper subformations. The volcanic rocks containing zircons (four samples, rhyodacite and rhyolite collected at Mashak, Berezyak, and Bolshoi Shatak ranges) are largely confined to the lower subformation. Analyses were performed using a SHRIMP II methodology, with special attention to the mineralogical characteristics of zircons, including their habit, morphology, preservation, and inclusions. All zircons show similarities in their mineral chemistry and geochemistry, which are indicative of the geochemical affinity of the volcanic rocks. At the same time, all zircon grains are characterized by specific typological parameters, which may equally reflect the parameters involved in the development of such volcanic rocks under different conditions. The integrated U-Pb age of zircons (SHRIMP II, VSEGEI, St. Petersbrug) from the four samples is 1383 ± 3 Ma. On the basis of the age of the Berdyaush gabbro-granitoid intrusion (up to 1410 Ma), the most likely age of this boundary is 1400 Ma, which is equated to the Calymmian and Ectasian of the International Stratigraphic Scale.  相似文献   

13.
The paper presents the first detailed mineralogical, structural, and crystal-chemical characteristics of the mixed-layer corrensite-chlorites from the glauconitic sandy-clayey rocks that make up the bottom (0.10 m) of a basal member (1.50 m) of the lower subformation of the Yusmastakh Formation (Riphean, Anabar Uplift, North Siberia). Like the overlying mudstones (1.40 m) in the basal member, these rocks are generally transformed up to the deep catagenesis level and included in a thick dolomite sequence. In mudstones represented by the dioctahedral micas, the corrensite-type minerals are observed as traces.  相似文献   

14.
The comprehensive study of sections of the Shatak Complex has revealed that conglomerates at the base of Middle Riphean rocks are not basal but intraformational rocks. Previously described angular unconformities between shales of the Sukhin Subformation (Yusha Formation, R1) and conglomerates of the Kuz”elga Subformation (Mashak Formation, R2) are related to late tectonic movements. Magmatic rocks developed at the base of the Middle Riphean section are represented by sheet intrusions formed in the course of emplacement of a fluid-saturated magmatic melt into partially or completely lithified terrigenous rocks at the graben formation stage during the origination of synkinematic faults that served as magma conduits. It is inferred that distribution of provenances of clastic materials and sedimentation basins in the Burzyanian and Yurmatian should be scrutinized in the study region, because the normal regressive sequence of rocks from the uppermost Yusha Formation to the lowermost Mashak Formation, which was established in the Shatak Ridge, eliminates a clear boundary distinguished between them at present. The idea about an older age of the Mashak conglomerates is substantiated.  相似文献   

15.
We consider the general and specific features of the evolution of the composition of fine-grained terrigenous rocks in the Riphean sedimentary megasequences of the Southern Urals, Uchur-Maya region, and Yenisei Ridge. It has been established that the crust on the southwestern (in the modern frame of references) periphery of the Siberian craton was geochemically the most mature segment of the Riphean continental crust. For example, the fine-grained clastic rocks and metapelites of all Riphean lithostratigraphic units of the Yenisei Ridge have higher median contents of Th than the most mature Paleoproterozoic crust, and in median contents of Y and Cr/Th values they are the most similar to it. In the Southern Urals and Uchur-Maya region, some units of the Riphean sedimentary sequences show median contents of Y and Th and Cr/Th values close to those of primitive Archean crust. Analysis of Cr/Th variations in the fine-grained terrigenous rocks of all three megasequences shows that the minimum Cr/Th values, evidencing a predominance or the abundance of felsic rocks in provenances, are typical of the Riphean argillaceous shales and metapelites of the Yenisei Ridge. The distinct Cr/Th and Cr/Sc increase in the fine-grained clastic rocks of the Chingasan Group of the ridge reflects the large-scale destruction of continental crust during the formation of rift troughs as a result of the Rodinia breakup in the second half of the Late Riphean. The Cr/Th variations in the Lower and Middle Riphean argillaceous shales and mudstones of the Bashkirian mega-anticlinorium and Uchur-Maya region are in agreement, which evidences the subglobal occurrence of rifting in the early Middle Riphean (so-called “Mashak rifting”).  相似文献   

16.
Rb-Sr and K-Ar characteristics of Vendian and Upper Riphean sections in various structural units of the East European Platform are studied. It is shown that Neoproterozoic clayey rocks of the platform underwent postsedimentary transformations, primarily owing to processes of K accumulation (illitization). Their intensity decreases with depth and isotopic signatures of provenance rocks are partly retained in Riphean rocks. Stages of the most active transformations approximately 400 and 600 Ma ago are manifested in the Vendian clayey rocks. Events of approximately 1000 Ma ago are recorded in Riphean rocks of the East European Platform. The least altered rocks of the Pachelma aulacogen can retain ancient hydrocarbon pools.  相似文献   

17.
Excellently preserved organic-walled and silicified microfossils are first found in the Lower Riphean Ust-Il’ya and Kotuikan formations of the Billyakh Group in the northern slope of the Anabar Uplift (the Fomich River basin). Similar assemblages were previously known only from sections located southward in the Kotuikan River basin, and taxonomic composition of organic-walled microbiotas from the Ust-Il’ya and Kotuikan formations became a corner stone in competitive microphytological models that are based on different approaches. In their composition and general appearance, microbiotas from the Kotuikan and Ust-Il’ya formations in the Fomich River basin are similar to microbiotas reported from the Kotuikan River basin, although northern sections of the above formations characterize deeper sedimentation settings than in localities known before. The Ust-Il’ya and Kotuikan assemblages of organic-walled microfossils include sphaeromorphic Chuaria circularis and Leiosphaeridia, two-layer vesicles the genus Simia, filamentous Plicatidium and Taenitrichoides, and some others. The silicified microbiota from the lower Kotuikan Subformation is largely composed of akinetes of Anabaena-like cyanobacteria Archaeoellipsoides, spherical Myxococcoides grandis, and short trichomes Filiconstrictosus and Orculiphycus representing initial germination stages of Anabaena-like cyanobacterial spores. Acanthomorphic acritarchs known from lithology-similar Lower and Middle Riphean (Mesoproterozoic) formations of Australia and China have not been observed in the Ust-Il’ya and Kotuikan microbiotas, which are probably of older age. The found microbiotas outline substantially wider distribution area of organic-walled and silicified microfossils, supplement microphytological characteristics of Riphean sediments in the Anabar Uplift, provide information on taxonomic composition of microbiotas from a wider spectrum of facies, and specify relationships between Early and Middle Riphean assemblages of microorganisms from different continents.  相似文献   

18.
Detailed mineralogical characteristics of various forms of glauconite occurrence in Lower Cretaceous marine terrigenous rocks of the White Island (Binnel Bay, southern England) are discussed. It has been shown that glauconite was formedin situ due to the transformation of fine-dispersed and sandy-silty terrigenous materials. The influence of bacterial activity on glauconite formation is supported by the study of dissolution zones on quartz and feldspar grains, which revealed biomorphic structures akin to fossilized bacteria.  相似文献   

19.
The paper presents an overview of crystal-chemical peculiarities of the previously studied globular dioctahedral 2 : 1 layer silicates of the glauconite-illite compositions from the Upper Proterozoic sections in northern Siberia (Anabar and Olenek uplifts). Lithomineralogical peculiarities of the glauconite-bearing rocks are discussed. Geochronological data on some samples are given. Monomineral fractions of grains were studied with the modern chemical and physical methods (X-ray diffraction, oblique-texture electron diffraction (OTED), scanning electron microscopy, IR and Mossbauer spectroscopy, classical chemical and microprobe analyses, and others). Low-charge dioctahedral 2 : 1 layer silicates were classified with consideration of the IMA NC and AIPEA NC recommendations (Rieder et al., 1998; Guggenheim et al., 2006). This classification showed that the studied globular Al- and Fe-bearing varieties include a continuous isomorphic glauconite-illite series. Intermediate layer silicates beyond the IMA NC and AIPEA NC classification are assigned to Al-glauconites (Fe-illites). True illites should be supplemented with adjectives ??globular?? or ??platy,?? because green globules and the fine-dispersed Al-bearing clay minerals are traditionally recognized as ??glauconite?? and ??illite,?? respectively.  相似文献   

20.
This paper presents the first Sr isotopic data for the Late Precambrian carbonate rocks of the southern Yenisei Ridge. Their geochemical study allowed estimation of the degree of secondary alterations and gave the possibility to reveal rocks with a less disturbed Rb-Sr isotopic system. The Sr isotopic data indicated Neoproterozoic sedimentation of the rocks about 1070–750 Ma ago. Sr and C isotopic data showed that carbonate rocks of the Sukhoi Pit, Tungusik, and Shirokino groups are Late Riphean and could be comparable with sedimentary sequences of three Precambrian key sections of the Northern Eurasia: the subsequent Derevnino, Burovaya, and Shorikha formations from the Turukhansk Uplift, the Lakhanda Group from the Uchur-Maya region, and the Karatav Group from the South Urals. All studied carbonate rocks are older than 750 Ma and, according to the International Stratigraphic Chart, accumulated prior to global glaciations in the Cryogenian. This is evident from sedimentological study indicating the absence of tillite horizons in the studied sections. δ13C values in the sections vary from +0.4 up to +5.3‰, which testifies to the absence of periods of great cold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号