首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is \(113\pm 1.6~\mbox{days}\) while we detected much longer periodicities (\(327\pm 13\), \(312 \pm 11\), and \(256\pm 8~\mbox{days}\)) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding \(55\pm 0.7~\mbox{days}\) during Solar Cycles 22 and 24, while a \(113\pm 1.3~\mbox{days}\) period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only \(31\pm 0.2~\mbox{days}\) for Cycle 22 and \(72\pm 1.3~\mbox{days}\) for the current Cycle 24, while the largest measured period was \(327\pm 13~\mbox{days}\) during Solar Cycle 23.  相似文献   

2.
We studied the occurrence and characteristics of geomagnetic storms associated with disk-centre full-halo coronal mass ejections (DC-FH-CMEs). Such coronal mass ejections (CMEs) can be considered as the most plausible cause of geomagnetic storms. We selected front-side full-halo coronal mass ejections detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO) from the beginning of 1996 till the end of 2015 with source locations between solar longitudes E10 and W10 and latitudes N20 and S20. The number of selected CMEs was 66 of which 33 (50%) were deduced to be the cause of 30 geomagnetic storms with \(\mathrm{Dst} \leq- 50~\mbox{nT}\). Of the 30 geomagnetic storms, 26 were associated with single disk-centre full-halo CMEs, while four storms were associated, in addition to at least one disk-centre full-halo CME, also with other halo or wide CMEs from the same active region. Thirteen of the 66 CMEs (20%) were associated with 13 storms with \(-100~\mbox{nT} < \mbox{Dst} \leq- 50~\mbox{nT}\), and 20 (30%) were associated with 17 storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\). We investigated the distributions and average values of parameters describing the DC-FH-CMEs and their interplanetary counterparts encountering Earth. These parameters included the CME sky-plane speed and direction parameter, associated solar soft X-ray flux, interplanetary magnetic field strength, \(B_{t}\), southward component of the interplanetary magnetic field, \(B_{s}\), solar wind speed, \(V_{sw}\), and the \(y\)-component of the solar wind electric field, \(E_{y}\). We found only a weak correlation between the Dst of the geomagnetic storms associated with DC-FH-CMEs and the CME sky-plane speed and the CME direction parameter, while the correlation was strong between the Dst and all the solar wind parameters (\(B_{t}\), \(B_{s}\), \(V_{sw}\), \(E_{y}\)) measured at 1 AU. We investigated the dependences of the properties of DC-FH-CMEs and the associated geomagnetic storms on different phases of solar cycles and the differences between Solar Cycles 23 and 24. In the rise phase of Solar Cycle 23 (SC23), five out of eight DC-FH-CMEs were geoeffective (\(\mbox{Dst} \leq- 50~\mbox{nT}\)). In the corresponding phase of SC24, only four DC-FH-CMEs were observed, three of which were nongeoeffective (\(\mbox{Dst} > - 50~\mbox{nT}\)). The largest number of DC-FH-CMEs occurred at the maximum phases of the cycles (21 and 17, respectively). Most of the storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\) occurred at or close to the maximum phases of the cycles. When comparing the storms during epochs of corresponding lengths in Solar Cycles 23 and 24, we found that during the first 85 months of Cycle 23 the geoeffectiveness rate of the disk-centre full-halo CMEs was 58% with an average minimum value of the Dst index of \(- 146~\mbox{nT}\). During the corresponding epoch of Cycle 24, only 35% of the disk-centre full-halo CMEs were geoeffective with an average value of Dst of \(- 97~\mbox{nT}\).  相似文献   

3.
We propose a forecasting approach for solar flares based on data from Solar Cycle 24, taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) mission. In particular, we use the Space-weather HMI Active Region Patches (SHARP) product that facilitates cut-out magnetograms of solar active regions (AR) in the Sun in near-realtime (NRT), taken over a five-year interval (2012?–?2016). Our approach utilizes a set of thirteen predictors, which are not included in the SHARP metadata, extracted from line-of-sight and vector photospheric magnetograms. We exploit several machine learning (ML) and conventional statistics techniques to predict flares of peak magnitude \({>}\,\mbox{M1}\) and \({>}\,\mbox{C1}\) within a 24 h forecast window. The ML methods used are multi-layer perceptrons (MLP), support vector machines (SVM), and random forests (RF). We conclude that random forests could be the prediction technique of choice for our sample, with the second-best method being multi-layer perceptrons, subject to an entropy objective function. A Monte Carlo simulation showed that the best-performing method gives accuracy \(\mathrm{ACC}=0.93(0.00)\), true skill statistic \(\mathrm{TSS}=0.74(0.02)\), and Heidke skill score \(\mathrm{HSS}=0.49(0.01)\) for \({>}\,\mbox{M1}\) flare prediction with probability threshold 15% and \(\mathrm{ACC}=0.84(0.00)\), \(\mathrm{TSS}=0.60(0.01)\), and \(\mathrm{HSS}=0.59(0.01)\) for \({>}\,\mbox{C1}\) flare prediction with probability threshold 35%.  相似文献   

4.
Recently we (Kahler and Ling, Solar Phys.292, 59, 2017: KL) have shown that time–intensity profiles [\(I(t)\)] of 14 large solar energetic particle (SEP) events can be fitted with a simple two-parameter fit, the modified Weibull function, which is characterized by shape and scaling parameters [\(\alpha\) and \(\beta\)]. We now look for a simple correlation between an event peak energy intensity [\(I_{\mathrm{p}}\)] and the time integral of \(I(t)\) over the event duration: the fluence [\(F\)]. We first ask how the ratio of \(F/I_{\mathrm{p}}\) varies for the fits of the 14 KL events and then examine that ratio for three separate published statistical studies of SEP events in which both \(F\) and \(I_{\mathrm{p}}\) were measured for comparisons of those parameters with various solar-flare and coronal mass ejection (CME) parameters. The three studies included SEP energies from a 4?–?13 MeV band to \(E > 100~\mbox{MeV}\). Within each group of SEP events, we find a very robust correlation (\(\mathrm{CC} > 0.90\)) in log–log plots of \(F\)versus\(I_{\mathrm{p}}\) over four decades of \(I_{\mathrm{p}}\). The ratio increases from western to eastern longitudes. From the value of \(I_{\mathrm{p}}\) for a given event, \(F\) can be estimated to within a standard deviation of a factor of \({\leq}\,2\). Log–log plots of two studies are consistent with slopes of unity, but the third study shows plot slopes of \({<}\,1\) and decreasing with increasing energy for their four energy ranges from \(E > 10~\mbox{MeV}\) to \({>}\,100~\mbox{MeV}\). This difference is not explained.  相似文献   

5.
In this study, we investigate the interplanetary consequences and travel time details of 58 coronal mass ejections (CMEs) in the Sun–Earth distance. The CMEs considered are halo and partial halo events of width \({>}\,120\)°. These CMEs occurred during 2009?–?2013, in the ascending phase of the Solar Cycle 24. Moreover, they are Earth-directed events that originated close to the centre of the solar disk (within about \(\pm30\)° from the Sun’s centre) and propagated approximately along the Sun–Earth line. For each CME, the onset time and the initial speed have been estimated from the white-light images observed by the LASCO coronagraphs onboard the SOHO space mission. These CMEs cover an initial speed range of \({\sim}\,260\,\mbox{--}\,2700~\mbox{km}\,\mbox{s}^{-1}\). For these CMEs, the associated interplanetary shocks (IP shocks) and interplanetary CMEs (ICMEs) at the near-Earth environment have been identified from in-situ solar wind measurements available at the OMNI data base. Most of these events have been associated with moderate to intense IP shocks. However, these events have caused only weak to moderate geomagnetic storms in the Earth’s magnetosphere. The relationship of the travel time with the initial speed of the CME has been compared with the observations made in the previous Cycle 23, during 1996?–?2004. In the present study, for a given initial speed of the CME, the travel time and the speed at 1 AU suggest that the CME was most likely not much affected by the drag caused by the slow-speed dominated heliosphere. Additionally, the weak geomagnetic storms and moderate IP shocks associated with the current set of Earth-directed CMEs indicate magnetically weak CME events of Cycle 24. The magnetic energy that is available to propagate CME and cause geomagnetic storm could be significantly low.  相似文献   

6.
Many models of eruptive flares or coronal mass ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with a magnetic loop arcade. However, there is very limited observational information on the properties and evolution of these structures, hindering progress in understanding eruptive activity from the Sun. In white-light images, narrow coaxial rays trailing the outward-moving CME have been interpreted as current sheets. Here, we undertake the most comprehensive statistical study of CME-rays to date. We use SOHO/LASCO data, which have a higher cadence, larger field of view, and better sensitivity than any previous coronagraph. We compare our results to a previous study of Solar Maximum Mission (SMM) CMEs, in 1984?–?1989, having candidate magnetic disconnection features at the CME base, about half of which were followed by coaxial bright rays. We examine all LASCO CMEs during two periods of minimum and maximum activity in Solar Cycle 23, resulting in many more events, \(\sim130\) CME-rays, than during SMM. Important results include: The occurrence rate of the rays is \(\sim11~\%\) of all CMEs during solar minimum, but decreases to \(\sim7~\%\) at solar maximum; this is most likely related to the more complex coronal background. The rays appear on average 3?–?4 hours after the CME core, and are typically visible for three-fourths of a day. The mean observed current sheet length over the ray lifetime is \(\sim12~R_{\odot}\), with the longest current sheet of \(18.5~R_{\odot}\). The mean CS growth rates are \(188~\mbox{km}\,\mathrm{s}^{-1}\) at minimum and \(324~\mbox{km}\,\mathrm{s}^{-1}\) at maximum. Outward-moving blobs within several rays, which are indicative of reconnection outflows, have average velocities of \(\sim350~\mbox{km}\,\mathrm{s}^{-1}\) with small positive accelerations. A pre-existing streamer is blown out in most of the CME-ray events, but half of these are observed to reform within \(\sim1\) day. The long lifetime and long lengths of the CME-rays challenge our current understanding of the evolution of the magnetic field in the aftermath of CMEs.  相似文献   

7.
A new solar imaging system was installed at Hida Observatory to observe the dynamics of flares and filament eruptions. The system (Solar Dynamics Doppler Imager; SDDI) takes full-disk solar images with a field of view of \(2520~\mbox{arcsec} \times 2520~\mbox{arcsec}\) at multiple wavelengths around the \(\mathrm{H}\alpha\) line at 6562 Å. Regular operation was started in May 2016, in which images at 73 wavelength positions spanning from \(\mathrm{H}\alpha -9~\mathring{\mathrm{A}}\) to \(\mathrm{H}\alpha +9~\mathring{\mathrm{A}}\) are obtained every 15 seconds. The large dynamic range of the line-of-sight velocity measurements (\({\pm}\,400~\mbox{km}\,\mbox{s}^{-1}\)) allows us to determine the real motions of erupting filaments in 3D space. It is expected that SDDI provides unprecedented datasets to study the relation between the kinematics of filament eruptions and coronal mass ejections (CME), and to contribute to the real-time prediction of the occurrence of CMEs that cause a significant impact on the space environment of the Earth.  相似文献   

8.
We present the results of solar observations at 20 and 25 MHz with the Ukrainian T-shaped Radio telescope of the second modification (UTR-2) in the interferometric session from 27 May to 2 June 2014. In this case, the different baselines 225, 450, and 675 m between the sections of the east–west and north–south arms of UTR-2 were used. On 29 May 2014, strong sporadic radio emission consisting of Type III, Type II, and Type IV bursts was observed. On other days, there was no solar radio activity in the decameter range. We discuss the observation results of the quiet Sun. Fluxes and sizes of the Sun in east–west and north–south directions were measured. The average fluxes were 1050?–?1100 Jy and 1480?–?1570 Jy at 20 and 25 MHz, respectively. The angular sizes of the quiet Sun in equatorial and polar directions were \(55'\) and \(49'\) at 20 MHz and \(50'\) and \(42'\) at 25 MHz. The brightness temperatures of the radio emission were \({T_{\mathrm{b}}} = 5.1 \times{10^{5}}~\mbox{K}\) and \({T_{\mathrm{b}}} = 5.7 \times{10^{5}}~\mbox{K}\) at 20 and 25 MHz, respectively.  相似文献   

9.
10.
Previous analysis of magnetohydrodynamic-scale currents in high-speed solar wind near 1 AU suggests that the most intense current-carrying structures occur at electron scales and are characterized by average current densities on the order of \(1~\mbox{pA}/\mbox{cm}^{2}\). Here, this prediction is verified by examining the effects of the measurement bandwidth and/or measurement resolution on the analysis of synthetic solar wind signals. Assuming Taylor’s hypothesis holds for the energetically dominant fluctuations at kinetic scales, the results show that when \(\nu_{c}\gg \nu_{b}\), where \(\nu_{c}\) is the measurement bandwidth and \(\nu_{b} \approx 1/3~\mbox{Hz}\) is the break frequency, the average scale of the most intense fluctuations in the current density proxy is approximately \(1/\nu_{c}\), and the average peak current density is a weakly increasing function that scales approximately like \(\nu_{c}^{0.1}\).  相似文献   

11.
Sequential chromospheric brightenings (SCBs) are often observed in the immediate vicinity of erupting flares and are associated with coronal mass ejections. Since their initial discovery in 2005, there have been several subsequent investigations of SCBs. These studies have used differing detection and analysis techniques, making it difficult to compare results between studies. This work employs the automated detection algorithm of Kirk et al. (Solar Phys. 283, 97, 2013) to extract the physical characteristics of SCBs in 11 flares of varying size and intensity. We demonstrate that the magnetic substructure within the SCB appears to have a significantly smaller area than the corresponding \(\mbox{H}\upalpha\) emission. We conclude that SCBs originate in the lower corona around \(0.1~R_{\odot}\) above the photosphere, propagate away from the flare center at speeds of \(35\,\mbox{--}\,85~\mbox{km}\,\mbox{s}^{-1}\), and have peak photosphere magnetic intensities of \(148\pm2.9~\mbox{G}\). In light of these measurements, we infer SCBs to be distinctive chromospheric signatures of erupting coronal mass ejections.  相似文献   

12.
We clarify the uncertainty in the inferred magnetic field vector via the Hanle diagnostics of the hydrogen Lyman-\(\upalpha\) line when the stratification of the underlying atmosphere is unknown. We calculate the anisotropy of the radiation field with plane-parallel semi-empirical models under the nonlocal thermal equilibrium condition and derive linear polarization signals for all possible parameters of magnetic field vectors based on an analytical solution of the atomic polarization and Hanle effect. We find that the semi-empirical models of the inter-network region (FAL-A) and network region (FAL-F) show similar degrees of anisotropy in the radiation field, and this similarity results in an acceptable inversion error (e.g., \({\sim}\, 40~\mbox{G}\) instead of 50 G in field strength and \({\sim}\,100^{\circ}\) instead of \(90^{\circ}\) in inclination) when FAL-A and FAL-F are swapped. However, the semi-empirical models of FAL-C (averaged quiet-Sun model including both inter-network and network regions) and FAL-P (plage regions) yield an atomic polarization that deviates from all other models, which makes it difficult to precisely determine the magnetic field vector if the correct atmospheric model is not known (e.g., the inversion error is much larger than 40% of the field strength; \({>}\,70~\mbox{G}\) instead of \(50~\mbox{G}\)). These results clearly demonstrate that the choice of model atmosphere is important for Hanle diagnostics. As is well known, one way to constrain the average atmospheric stratification is to measure the center-to-limb variation of the linear polarization signals. The dependence of the center-to-limb variations on the atmospheric model is also presented in this paper.  相似文献   

13.
As a coronal mass ejection (CME) passes, the flank and wake regions are typically strongly disturbed. Various instruments, including the Large Angle and Spectroscopic Coronagraph (LASCO), the Atmospheric Imaging Assembly (AIA), and the Coronal Multi-channel Polarimeter (CoMP), observed a CME close to the east limb on 26 October 2013. A hot (\({\approx}\,10~\mbox{MK}\)) rising blob was detected on the east limb, with an initial ejection flow speed of \({\approx}\, 330~\mbox{km}\,\mbox{s}^{-1}\). The magnetic structures on both sides and in the wake of the CME were strongly distorted, showing initiation of turbulent motions with Doppler-shift oscillations enhanced from \({\approx}\, \pm 3~\mbox{km}\,\mbox{s}^{-1}\) to \({\approx}\, \pm 15~\mbox{km}\,\mbox{s}^{-1}\) and effective thermal velocities from \({\approx}\,30~\mbox{km}\,\mbox{s}^{-1}\) to \({\approx}\,60~\mbox{km}\,\mbox{s}^{-1}\), according to the CoMP observations at the Fe?xiii line. The CoMP Doppler-shift maps suggest that the turbulence behaved differently at various heights; it showed clear wave-like torsional oscillations at lower altitudes, which are interpreted as the antiphase oscillation of an alternating red/blue Doppler shift across the strands at the flank. The turbulence seems to appear differently in the channels of different temperatures. Its turnover time was \({\approx}\,1000\) seconds for the Fe 171 Å channel, while it was \({\approx}\,500\) seconds for the Fe 193 Å channel. Mainly horizontal swaying rotations were observed in the Fe 171 Å channel, while more vertical vortices were seen in the Fe 193 Å channel. The differential-emission-measure profiles in the flank and wake regions have two components that evolve differently: the cool component decreased over time, evidently indicating a drop-out of cool materials due to ejection, while the hot component increased dramatically, probably because of the heating process, which is suspected to be a result of magnetic reconnection and turbulence dissipation. These results suggest a new turbulence-heating scenario of the solar corona and solar wind.  相似文献   

14.
We investigate the parameters of global solar p-mode oscillations, namely damping width \(\Gamma\), amplitude \(A\), mean squared velocity \(\langle v^{2}\rangle\), energy \(E\), and energy supply rate \(\mathrm{d}E/\mathrm{d}t\), derived from two solar cycles’ worth (1996?–?2018) of Global Oscillation Network Group (GONG) time series for harmonic degrees \(l=0\,\mbox{--}\,150\). We correct for the effect of fill factor, apparent solar radius, and spurious jumps in the mode amplitudes. We find that the amplitude of the activity-related changes of \(\Gamma\) and \(A\) depends on both frequency and harmonic degree of the modes, with the largest variations of \(\Gamma\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le3300~\upmu\mbox{Hz}\) and \(31\le l \le60\) with a minimum-to-maximum variation of \(26.6\pm0.3\%\) and of \(A\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le 3300~\upmu\mbox{Hz}\) and \(61\le l \le100\) with a minimum-to-maximum variation of \(27.4\pm0.4\%\). The level of correlation between the solar radio flux \(F_{10.7}\) and mode parameters also depends on mode frequency and harmonic degree. As a function of mode frequency, the mode amplitudes are found to follow an asymmetric Voigt profile with \(\nu_{\text{max}}=3073.59\pm0.18~\upmu\mbox{Hz}\). From the mode parameters, we calculate physical mode quantities and average them over specific mode frequency ranges. In this way, we find that the mean squared velocities \(\langle v^{2}\rangle\) and energies \(E\) of p modes are anticorrelated with the level of activity, varying by \(14.7\pm0.3\%\) and \(18.4\pm0.3\%\), respectively, and that the mode energy supply rates show no significant correlation with activity. With this study we expand previously published results on the temporal variation of solar p-mode parameters. Our results will be helpful to future studies of the excitation and damping of p modes, i.e., the interplay between convection, magnetic field, and resonant acoustic oscillations.  相似文献   

15.
A full three-dimensional, numerical model is used to study the modulation of Jovian and Galactic electrons from 1 MeV to 50 GeV, and from the Earth into the heliosheath. For this purpose the very local interstellar spectrum and the Jovian electron source spectrum are revisited. It is possible to compute the former with confidence at kinetic energies \(E < 50~\mbox{MeV}\) since Voyager 1 crossed the heliopause in 2012 at \(\sim 122~\mbox{AU}\), measuring Galactic electrons at these energies. Modeling results are compared with Voyager 1 observations in the outer heliosphere, including the heliosheath, as well as observations at or near the Earth from the ISSE3 mission, and in particular the solar minimum spectrum from the PAMELA space mission for 2009, also including data from Ulysses for 1991 and 1992, and observations above 1 MeV from SOHO/EPHIN. Making use of the observations at or near the Earth and the two newly derived input functions for the Jovian and Galactic electrons respectively, the energy range over which the Jovian electrons dominate the Galactic electrons is determined so that the intensity of Galactic electrons at Earth below 100 MeV is calculated. The differential intensity for the Galactic electrons at Earth for \(E = 1~\mbox{MeV}\) is \(\sim 4\) electrons \(\mbox{m}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mbox{MeV}^{-1}\), whereas for Jovian electrons it is \(\sim 350\) electrons \(\mbox{m}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mbox{MeV}^{-1}\). At \(E = 30~\mbox{MeV}\) the two intensities are the same; above this energy the Jovian electron intensity quickly subsides so that the Galactic intensity completely dominates. At 6 MeV, in the equatorial plane the Jovian electrons dominate but beyond \(\sim 15~\mbox{AU}\) the Galactic intensity begins to exceed the Jovian intensity significantly.  相似文献   

16.
We perform a statistical analysis on 157 M-class soft X-ray flares observed during 1997?–?2014 with and without deca-hectometric (DH) type II radio bursts aiming at the reasons for the non-occurrence of DH type II bursts in certain events. All the selected events are associated with halo Coronal Mass Ejections (CMEs) detected by the Solar and Heliospheric Observatory (SOHO) / Large Angle Spectrometric and COronograph (LASCO). Out of 157 events, 96 (61%; “Group I”) events are associated with a DH type II burst observed by the Radio and Plasma Wave (WAVES) experiment onboard the Wind spacecraft and 61 (39%; “Group II”) events occur without a DH type II burst. The mean CME speed of Group I is \(1022~\mbox{km}/\mbox{s}\) and that of Group II is \(647~\mbox{km}/\mbox{s}\). It is also found that the properties of the selected M-class flares such as flare intensity, rise time, duration and decay time are greater for the DH associated flares than the non-DH flares. Group I has a slightly larger number (56%) of western events than eastern events (44%), whereas Group II has a larger number of eastern events (62%) than western events (38%). We also compare this analysis with the previous study by Lawrance, Shanmugaraju, and Vr?nak (Solar Phys. 290, 3365L, 2015) concerning X-class flares and confirm that high-intensity flares (X-class and M-class) have the same trend in the CME and flare properties. Additionally we consider aspects like acceleration and the possibility of CME-streamer interaction. The average deceleration of CMEs with DH type II bursts is weaker (\(a = - 4.39\mbox{ m}/\mbox{s}^{2}\)) than that of CMEs without a type II burst (\(a = -12.21\mbox{ m}/\mbox{s}^{2}\)). We analyze the CME-streamer interactions for Group I events using the model proposed by Mancuso and Raymond (Astron. Astrophys. 413, 363, 2004) and find that the interaction regions are the most probable source regions for DH type II radio bursts.  相似文献   

17.
We report the discovery of gamma-ray detection from the Large Magellanic Cloud (LMC) B0443-6657 using the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. LMC B0443-6657 is a flat-spectrum radio source, possibly associated with a supernova remnant in the Large Magellanic Cloud (LMC N4). Employing the LAT data of 8 years, our results show a significant excess (\(>9.4\sigma \)) of gamma rays in the range of 0.2–100 GeV above the gamma-ray background. A power-law function is found to adequately describe the 0.2–\(100\mbox{ GeV}\)\(\gamma \)-ray spectrum, which yields a photon flux of \(3.27\pm 0.53\ \text{photon}\,\mbox{cm}^{2}\,\mbox{s}^{-1}\) with a photon index of \(2.35\pm 0.11\), corresponding to an isotropic gamma-ray luminosity of \(5.3\times 10^{40}~\mbox{erg}\,\mbox{s}^{-1}\). The hadronic model predicts a low X-ray and TeV flux while the leptonic model predicts an observable flux in these two energy bands. The follow-up observations of the LMC B0443-6657 in X-ray or TeV band would distinguish the radiation models of gamma rays from this region.  相似文献   

18.
We have analyzed Interface Region Imaging Spectrograph (IRIS) spectral and slit-jaw observations of a quiet region near the South Pole. In this article we present an overview of the observations, the corrections, and the absolute calibration of the intensity. We focus on the average profiles of strong (Mg?ii h and k, C?ii and Si?iv), as well as of weak spectral lines in the near ultraviolet (NUV) and the far ultraviolet (FUV), including the Mg?ii triplet, thus probing the solar atmosphere from the low chromosphere to the transition region. We give the radial variation of bulk spectral parameters as well as line ratios and turbulent velocities. We present measurements of the formation height in lines and in the NUV continuum from which we find a linear relationship between the position of the limb and the intensity scale height. We also find that low forming lines, such as the Mg?ii triplet, show no temporal variations above the limb associated with spicules, suggesting that such lines are formed in a homogeneous atmospheric layer and, possibly, that spicules are formed above the height of \(2''\). We discuss the spatio-temporal structure of the atmosphere near the limb from images of intensity as a function of position and time. In these images, we identify p-mode oscillations in the cores of lines formed at low heights above the photosphere, slow-moving bright features in O?i and fast-moving bright features in C?ii. Finally, we compare the Mg?ii k and h line profiles, together with intensity values of the Balmer lines from the literature, with computations from the PROM57Mg non-LTE model, developed at the Institut d’ Astrophysique Spatiale, and estimated values of the physical parameters. We obtain electron temperatures in the range of \({\sim}\, 8000~\mbox{K}\) at small heights to \({\sim}\, 20\,000~\mbox{K}\) at large heights, electron densities from \(1.1\times 10^{11}\) to \(4\times 10^{10}~\mbox{cm}^{-3}\) and a turbulent velocity of \({\sim}\, 24~\mbox{km}\,\mbox{s}^{-1}\).  相似文献   

19.
We estimate the electron density, \(n_{\mathrm{e}}\), and its spatial variation in quiescent prominences from the observed emission ratio of the resonance lines Na?i?5890 Å (D2) and Sr?ii?4078 Å. For a bright prominence (\(\tau_{\alpha}\approx25\)) we obtain a mean \(n_{\mathrm{e}}\approx2\times10^{10}~\mbox{cm}^{-3}\); for a faint one (\(\tau _{\alpha }\approx4\)) \(n_{\mathrm{e}}\approx4\times10^{10}~\mbox{cm}^{-3}\) on two consecutive days with moderate internal fluctuation and no systematic variation with height above the solar limb. The thermal and non-thermal contributions to the line broadening, \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\), required to deduce \(n_{\mathrm{e}}\) from the emission ratio Na?i/Sr?ii cannot be unambiguously determined from observed widths of lines from atoms of different mass. The reduced widths, \(\Delta\lambda_{\mathrm{D}}/\lambda_{0}\), of Sr?ii?4078 Å show an excess over those from Na?D2 and \(\mbox{H}\delta\,4101\) Å, assuming the same \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\). We attribute this excess broadening to higher non-thermal broadening induced by interaction of ions with the prominence magnetic field. This is suggested by the finding of higher macro-shifts of Sr?ii?4078 Å as compared to those from Na?D2.  相似文献   

20.
We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have used ring-diagram analysis to analyze Dopplergrams obtained with the Michelson Doppler Imager (MDI) Dynamics Program, the Global Oscillation Network Group (GONG), and the Helioseismic and Magnetic Imager (HMI) instrument. We combined the zonal and meridional flows from the three data sources and scaled the flows derived from MDI and GONG to match those from HMI observations. In this way, we derived their temporal variation in a consistent manner for Solar Cycles 23 and 24. We have corrected the measured flows for systematic effects that vary with disk positions. Using time-depth slices of the corrected subsurface flows, we derived the amplitudes and times of the extrema of the fast and slow zonal and meridional flows during Cycles 23 and 24 at every depth and latitude. We find an average difference between maximum and minimum amplitudes of \(8.6 \pm0.4~\mbox{m}\,\mbox{s}^{-1}\) for the zonal flows and \(7.9 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flows associated with Cycle 24 averaged over a depth range from 2 to 12 Mm. The corresponding values derived from GONG data alone are \(10.5 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the zonal and \(10.8 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flow. For Cycle 24, the flow patterns are precursors of the magnetic activity. The timing difference between the occurrence of the flow pattern and the magnetic one increases almost linearly with increasing latitude. For example, the fast zonal and meridional flow appear \(2.1 \pm 0.6\) years and \(2.5\pm 0.6\) years, respectively, before the magnetic pattern at \(30^{\circ}\) latitude in the northern hemisphere, while in the southern hemisphere, the differences are \(3.2 \pm 1.2\) years and \(2.6 \pm 0.6\) years. The flow patterns of Cycle 25 are present and have reached \(30^{\circ}\) latitude. The amplitude differences of Cycle 25 are about 22% smaller than those of Cycle 24, but are comparable to those of Cycle 23. Moreover, polynomial fits of meridional flows suggest that equatorward meridional flows (counter-cells) might exist at about \(80^{\circ}\) latitude except during the declining phase of the solar cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号