首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
Data of geomagnetic indices (aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967–2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (\(\mathbf{T}\)) and Away (\(\mathbf{A}\)) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of \(\mathbf{A}\) polarity predominated over the \(\mathbf{T}\) polarity days by 4.3% during the positive magnetic polarity epoch (1991–1999). While the days of \(\mathbf{T}\) polarity exceeded the days of \(\mathbf{A}\) polarity by 5.8% during the negative magnetic polarity epoch (2001–2012). (ii) Considerable yearly North–South (N–S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for \(aa\) and \(Ap\) indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for \(aa\) and \(Ap\) indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N–S asymmetry of \(Kp\) index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices (aa, Ap, and \(Kp\)) all have northern dominance during positive magnetic polarity epoch (1971–1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001–2012).  相似文献   

2.
We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have used ring-diagram analysis to analyze Dopplergrams obtained with the Michelson Doppler Imager (MDI) Dynamics Program, the Global Oscillation Network Group (GONG), and the Helioseismic and Magnetic Imager (HMI) instrument. We combined the zonal and meridional flows from the three data sources and scaled the flows derived from MDI and GONG to match those from HMI observations. In this way, we derived their temporal variation in a consistent manner for Solar Cycles 23 and 24. We have corrected the measured flows for systematic effects that vary with disk positions. Using time-depth slices of the corrected subsurface flows, we derived the amplitudes and times of the extrema of the fast and slow zonal and meridional flows during Cycles 23 and 24 at every depth and latitude. We find an average difference between maximum and minimum amplitudes of \(8.6 \pm0.4~\mbox{m}\,\mbox{s}^{-1}\) for the zonal flows and \(7.9 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flows associated with Cycle 24 averaged over a depth range from 2 to 12 Mm. The corresponding values derived from GONG data alone are \(10.5 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the zonal and \(10.8 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flow. For Cycle 24, the flow patterns are precursors of the magnetic activity. The timing difference between the occurrence of the flow pattern and the magnetic one increases almost linearly with increasing latitude. For example, the fast zonal and meridional flow appear \(2.1 \pm 0.6\) years and \(2.5\pm 0.6\) years, respectively, before the magnetic pattern at \(30^{\circ}\) latitude in the northern hemisphere, while in the southern hemisphere, the differences are \(3.2 \pm 1.2\) years and \(2.6 \pm 0.6\) years. The flow patterns of Cycle 25 are present and have reached \(30^{\circ}\) latitude. The amplitude differences of Cycle 25 are about 22% smaller than those of Cycle 24, but are comparable to those of Cycle 23. Moreover, polynomial fits of meridional flows suggest that equatorward meridional flows (counter-cells) might exist at about \(80^{\circ}\) latitude except during the declining phase of the solar cycle.  相似文献   

3.
We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is \(113\pm 1.6~\mbox{days}\) while we detected much longer periodicities (\(327\pm 13\), \(312 \pm 11\), and \(256\pm 8~\mbox{days}\)) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding \(55\pm 0.7~\mbox{days}\) during Solar Cycles 22 and 24, while a \(113\pm 1.3~\mbox{days}\) period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only \(31\pm 0.2~\mbox{days}\) for Cycle 22 and \(72\pm 1.3~\mbox{days}\) for the current Cycle 24, while the largest measured period was \(327\pm 13~\mbox{days}\) during Solar Cycle 23.  相似文献   

4.
We examine the average magnetic field magnitude (\(| \boldsymbol{B} | \equiv B\)) within magnetic clouds (MCs) observed by the Wind spacecraft from 1995 to July 2015 to understand the difference between this \(B\) and the ideal \(B\)-profiles expected from using the static, constant-\(\alpha\), force-free, cylindrically symmetric model for MCs of Lepping, Jones, and Burlaga (J. Geophys. Res. 95, 11957, 1990, denoted here as the LJB model). We classify all MCs according to an assigned quality, \(Q_{0}\) (\(= 1, 2, 3\), for excellent, good, and poor). There are a total of 209 MCs and 124 when only \(Q_{0} = 1\), 2 cases are considered. The average normalized field with respect to the closest approach (\(\mathit{CA}\)) is stressed, where we separate cases into four \(\mathit{CA}\) sets centered at 12.5 %, 37.5 %, 62.5 %, and 87.5 % of the average radius; the averaging is done on a percentage-duration basis to treat all cases the same. Normalized \(B\) means that before averaging, the \(B\) for each MC at each point is divided by the LJB model-estimated \(B\) for the MC axis, \(B_{0}\). The actual averages for the 209 and 124 MC sets are compared to the LJB model, after an adjustment for MC expansion (e.g. Lepping et al. in Ann. Geophys. 26, 1919, 2008). This provides four separate difference-relationships, each fitted with a quadratic (Quad) curve of very small \(\sigma\). Interpreting these Quad formulae should provide a comprehensive view of the variation in normalized \(B\) throughout the average MC, where we expect external front and rear compression to be part of its explanation. These formulae are also being considered for modifying the LJB model. This modification will be used in a scheme for forecasting the timing and magnitude of magnetic storms caused by MCs. Extensive testing of the Quad formulae shows that the formulae are quite useful in correcting individual MC \(B\)-profiles, especially for the first \({\approx\,}1/3\) of these MCs. However, the use of this type of \(B\) correction constitutes a (slight) violation of the force-free assumption used in the original LJB MC model.  相似文献   

5.
More than 80 giant planets are known by mass and radius. Their interior structure in terms of core mass, number of layers, and composition however is still poorly known. An overview is presented about the core mass M core and envelope mass of metals M Z in Jupiter as predicted by various equations of state. It is argued that the uncertainty about the true H/He EOS in a pressure regime where the gravitational moments J 2 and J 4 are most sensitive, i.e. between 0.5 and 4 Mbar, is in part responsible for the broad range \(M_{\mathit{core}}=0{-}18\:M_{\oplus }\), \(M_{Z}=0{-}38\:M_{\oplus }\), and \(M_{\mathit{core}}+M_{Z}=14{-}38\:M_{\oplus }\) currently offered for Jupiter. We then compare the Jupiter models obtained when we only match J 2 with the range of solutions for the exoplanet \(\mathrm{GJ}\:436\mathrm{b}\), when we match an assumed tidal Love number k 2 value.  相似文献   

6.
To investigate the \(M_\bullet -\sigma \) relation, we consider realistic elliptical galaxy profiles that are taken to follow a single power-law density profile given by \(\rho (r) = \rho _{0}(r/ r_{0})^{-\gamma }\) or the Nuker intensity profile. We calculate the density using Abel’s formula in the latter case by employing the derived stellar potential; in both cases. We derive the distribution function f(E) of the stars in the presence of the supermassive black hole (SMBH) at the center and hence compute the line-of-sight (LoS) velocity dispersion as a function of radius. For the typical range of values for masses of SMBH, we obtain \(M_{\bullet } \propto \sigma ^{p}\) for different profiles. An analytical relation \(p = (2\gamma + 6)/(2 + \gamma )\) is found which is in reasonable agreement with observations (for \(\gamma = 0.75{-}1.4\), \(p = 3.6{-}5.3\)). Assuming that a proportionality relation holds between the black hole mass and bulge mass, \(M_{\bullet } =f M_\mathrm{b}\), and applying this to several galaxies, we find the individual best fit values of p as a function of f; also by minimizing \(\chi ^{2}\), we find the best fit global p and f. For Nuker profiles, we find that \(p = 3.81 \pm 0.004\) and \(f = (1.23 \pm 0.09)\times 10^{-3}\) which are consistent with the observed ranges.  相似文献   

7.
Precise measurement of the coronal properties of Active Galactic Nuclei (AGN) requires the availability of high signal-to-noise ratio data covering a wide range of X-ray energies. The Nuclear Spectroscopic Telescope Array (NuSTAR) which is highly sensitive to earlier missions in its operational energy range of 3–79 keV, allows us to arrive at precise estimates of the coronal parameters such as cut-off energy (\(E_\mathrm{cut}\)), coronal temperature (\(\textit{kT}_e\)) and geometry of the corona at least for sources that have \(E_\mathrm{cut}\) within the energy range of NuSTAR. In this paper, we present our preliminary results on the spectral analysis of two Seyfert galaxies namely 3C 120 and NGC 4151 using NuSTAR observations in the 3–79 keV band. We investigated the continuum and coronal parameters, the photon index \(\Gamma \), \(E_\mathrm{cut}\) and \(\textit{kT}_{e}\). By fitting the X-ray spectrum of 3C 120 and NGC 4151 with a simple phenomenological model, we found that both the sources showed a clear cut-off in their spectrum.  相似文献   

8.
Small tidal forces in the Earth–Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = \(-25.97\pm 0.05 ''/\)cent\(^{2}\), da/dt = 38.30 ± 0.08 mm/year, and di/dt = ?0.5 ± 0.1 \(\upmu \)as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives \(\sim \) \(3\times 10^{-12}\)/year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = \((1.50 \pm 0.10)\times 10^{-11}\)/year. For total dn/dt, there is \(\le \)1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is \(-1316 ''\)/cent\(^{2}\) or 87.5 s/cent\(^{2}\) for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 \(\upmu \)as/year. For evolution during past times of slow recession, the eccentricity rate can be negative.  相似文献   

9.
The photometry of eclipse white-light (W-L) images showing a moving blob is interpreted for the first time together with observations from space with the PRoject for On Board Autonomy (PROBA-2) mission (ESA). An off-limb event seen with great details in W-L was analyzed with the SWAP imager (Sun Watcher using Active pixel system detector and image Processing) working in the EUV near 174 Å. It is an elongated plasma blob structure of 25 Mm diameter moving above the east limb with coronal loops under. Summed and co-aligned SWAP images are evaluated using a 20-h sequence, in addition to the 11 July, 2010 eclipse W-L images taken from several sites. The Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory (SDO) recorded the event suggesting a magnetic reconnection near a high neutral point; accordingly, we also call it a magnetic plasmoid. The measured proper motion of the blob shows a velocity up to \(12~\mbox{km}\,\mbox{s}^{-1}\). Electron densities of the isolated condensation (cloud or blob or plasmoid) are photometrically evaluated. The typical value is \(10^{8}~\mbox{cm}^{-3}\) at \(r=1.7~\mathrm{R}_{\odot}\), superposed on a background corona of \(10^{7}~\mbox{cm}^{-3}\) density. The mass of the cloud near its maximum brightness is found to be \(1.6\times10^{13}\) g, which is typically \(0.6\times10^{-4}\) of the overall mass of the corona. From the extrapolated magnetic field the cloud evolves inside a rather broad open region but decelerates, after reaching its maximum brightness. The influence of such small events for supplying material to the ubiquitous slow wind is noticed. A precise evaluation of the EUV photometric data, after accurately removing the stray light, suggests an interpretation of the weak 174 Å radiation of the cloud as due to resonance scattering in the Fe IX/X lines.  相似文献   

10.
We studied the occurrence and characteristics of geomagnetic storms associated with disk-centre full-halo coronal mass ejections (DC-FH-CMEs). Such coronal mass ejections (CMEs) can be considered as the most plausible cause of geomagnetic storms. We selected front-side full-halo coronal mass ejections detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO) from the beginning of 1996 till the end of 2015 with source locations between solar longitudes E10 and W10 and latitudes N20 and S20. The number of selected CMEs was 66 of which 33 (50%) were deduced to be the cause of 30 geomagnetic storms with \(\mathrm{Dst} \leq- 50~\mbox{nT}\). Of the 30 geomagnetic storms, 26 were associated with single disk-centre full-halo CMEs, while four storms were associated, in addition to at least one disk-centre full-halo CME, also with other halo or wide CMEs from the same active region. Thirteen of the 66 CMEs (20%) were associated with 13 storms with \(-100~\mbox{nT} < \mbox{Dst} \leq- 50~\mbox{nT}\), and 20 (30%) were associated with 17 storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\). We investigated the distributions and average values of parameters describing the DC-FH-CMEs and their interplanetary counterparts encountering Earth. These parameters included the CME sky-plane speed and direction parameter, associated solar soft X-ray flux, interplanetary magnetic field strength, \(B_{t}\), southward component of the interplanetary magnetic field, \(B_{s}\), solar wind speed, \(V_{sw}\), and the \(y\)-component of the solar wind electric field, \(E_{y}\). We found only a weak correlation between the Dst of the geomagnetic storms associated with DC-FH-CMEs and the CME sky-plane speed and the CME direction parameter, while the correlation was strong between the Dst and all the solar wind parameters (\(B_{t}\), \(B_{s}\), \(V_{sw}\), \(E_{y}\)) measured at 1 AU. We investigated the dependences of the properties of DC-FH-CMEs and the associated geomagnetic storms on different phases of solar cycles and the differences between Solar Cycles 23 and 24. In the rise phase of Solar Cycle 23 (SC23), five out of eight DC-FH-CMEs were geoeffective (\(\mbox{Dst} \leq- 50~\mbox{nT}\)). In the corresponding phase of SC24, only four DC-FH-CMEs were observed, three of which were nongeoeffective (\(\mbox{Dst} > - 50~\mbox{nT}\)). The largest number of DC-FH-CMEs occurred at the maximum phases of the cycles (21 and 17, respectively). Most of the storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\) occurred at or close to the maximum phases of the cycles. When comparing the storms during epochs of corresponding lengths in Solar Cycles 23 and 24, we found that during the first 85 months of Cycle 23 the geoeffectiveness rate of the disk-centre full-halo CMEs was 58% with an average minimum value of the Dst index of \(- 146~\mbox{nT}\). During the corresponding epoch of Cycle 24, only 35% of the disk-centre full-halo CMEs were geoeffective with an average value of Dst of \(- 97~\mbox{nT}\).  相似文献   

11.
In this work we consider the Kepler problem with linear drag, and prove the existence of a continuous vector-valued first integral, obtained taking the limit as \(t\rightarrow +\infty \) of the Runge–Lenz vector. The norm of this first integral can be interpreted as an asymptotic eccentricity \(e_{\infty }\) with \(0\le e_{\infty } \le 1\). The orbits satisfying \(e_{\infty } <1\) approach the singularity by an elliptic spiral and the corresponding solutions \(x(t)=r(t)e^{i\theta (t)}\) have a norm r(t) that goes to zero like a negative exponential and an argument \(\theta (t)\) that goes to infinity like a positive exponential. In particular, the difference between consecutive times of passage through the pericenter, say \(T_{n+1} -T_n\), goes to zero as \(\frac{1}{n}\).  相似文献   

12.
We investigate the relation between coronal hole (CH) areas and solar wind speeds during 1995?–?2011 using the potential field (PF) model analysis of magnetograph observations and interplanetary scintillation (IPS) observations by the Institute for Space-Earth Environmental Research (formerly Solar-Terrestrial Environment Laboratory) of Nagoya University. We obtained a significant positive correlation between the CH areas (\(A\)) derived from the PF model calculations and solar wind speeds (\(V\)) derived from the IPS observations. The correlation coefficients between them are usually high, but they drop significantly in solar maxima. The slopes of the \(A\)?–?\(V\) relation are roughly constant except for the period around solar maximum, when flatter or steeper slopes are observed. The excursion of the correlation coefficients and slopes at solar maxima is ascribed partly to the effect of rapid structural changes in the coronal magnetic field and solar wind, and partly to the predominance of small CHs. It is also demonstrated that \(V\) is inversely related to the flux expansion factor (\(f\)) and that \(f\) is closely related to \(A^{-1/2}\); hence, \(V \propto A^{1/2}\). A better correlation coefficient is obtained from the \(A^{1/2}\)?–?\(V\) relation, and this fact is useful for improving space weather predictions. We compare the CH areas derived from the PF model calculations with He i 1083 nm observations and show that the PF model calculations provide reliable estimates of the CH area, particularly for large \(A\).  相似文献   

13.
It is shown that a number of superfast, with periods \(< 2\) d, exoplanets revolve around parent stars with periods, near-commensurate with \(P_{E}\) and/or \(2 P_{E} / \pi\), where the exoplanet resonance timescale \(P_{E}=9603(85)\) s agrees fairly well with the period \(P_{0}= 9600.606(12)\) s of the so-called “cosmic oscillation” (the probability that the two timescales would coincide by chance is near \(3 \times10^{-4}\); the \(P_{0}\) period was discovered first in the Sun, and later on—in other objects of Cosmos). True nature of the exoplanet \(P_{0}\) resonance is unknown.  相似文献   

14.
The UV properties of 1152 Markarian galaxies have been investigated based on GALEX data. These objects have been investigated also in other available wavelengths using multi-wavelength data from X-ray to radio. Using our classification for activity types for 779 Markarian galaxies based on SDSS spectroscopy, we have investigated these objects on the GALEX, 2MASS and WISE color-magnitude and color-color diagrams by the location of objects of different activity types and have revealed a number of loci. UV contours overplotted on the optical images revealed additional structures, particularly spiral arms of a number of Markarian galaxies. UV (FUV and NUV) and optical absolute magnitudes and luminosities have been calculated showing graduate transition from AGN to Composites, HIIs and Absorption line galaxies from (average \(M\)) \(-17.56^{m}\) to \(-15.20^{m}\) in FUV, from \(-18.07^{m}\) to \(-15.71^{m}\) in NUV and from AGN to Composites, Absorption line galaxies and HII from \(-21.14^{m}\) to \(-19.42^{m}\) in optical wavelengths and from (average \(L\)) \(7\times10^{9}\) to \(4 \times 10^{8}\) in FUV, from \(1\times 10^{10}\) to \(5\times10^{8}\) in NUV and from AGN to Composites, Absorption line galaxies and HII from \(7\times10^{10}\) to \(1\times10^{10}\) in optical wavelengths.  相似文献   

15.
The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for \({>}\,6\) months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points \(L_{4}\) and \(L_{5}\), each extending longitude coverage by \(60^{\circ}\). Adding data also from the more distant point \(L_{3}\) extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/\(L_{1}\), \(L_{3}\), \(L_{4}\), and \(L_{5}\) over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.  相似文献   

16.
We investigate the parameters of global solar p-mode oscillations, namely damping width \(\Gamma\), amplitude \(A\), mean squared velocity \(\langle v^{2}\rangle\), energy \(E\), and energy supply rate \(\mathrm{d}E/\mathrm{d}t\), derived from two solar cycles’ worth (1996?–?2018) of Global Oscillation Network Group (GONG) time series for harmonic degrees \(l=0\,\mbox{--}\,150\). We correct for the effect of fill factor, apparent solar radius, and spurious jumps in the mode amplitudes. We find that the amplitude of the activity-related changes of \(\Gamma\) and \(A\) depends on both frequency and harmonic degree of the modes, with the largest variations of \(\Gamma\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le3300~\upmu\mbox{Hz}\) and \(31\le l \le60\) with a minimum-to-maximum variation of \(26.6\pm0.3\%\) and of \(A\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le 3300~\upmu\mbox{Hz}\) and \(61\le l \le100\) with a minimum-to-maximum variation of \(27.4\pm0.4\%\). The level of correlation between the solar radio flux \(F_{10.7}\) and mode parameters also depends on mode frequency and harmonic degree. As a function of mode frequency, the mode amplitudes are found to follow an asymmetric Voigt profile with \(\nu_{\text{max}}=3073.59\pm0.18~\upmu\mbox{Hz}\). From the mode parameters, we calculate physical mode quantities and average them over specific mode frequency ranges. In this way, we find that the mean squared velocities \(\langle v^{2}\rangle\) and energies \(E\) of p modes are anticorrelated with the level of activity, varying by \(14.7\pm0.3\%\) and \(18.4\pm0.3\%\), respectively, and that the mode energy supply rates show no significant correlation with activity. With this study we expand previously published results on the temporal variation of solar p-mode parameters. Our results will be helpful to future studies of the excitation and damping of p modes, i.e., the interplay between convection, magnetic field, and resonant acoustic oscillations.  相似文献   

17.
On 27 June 2012, an eruptive solar prominence was observed in the extreme ultraviolet (EUV) and radio wavebands. At the Aalto University Metsähovi Radio Observatory (MRO) it was observed at 37 GHz. It was the first time that the MRO followed a radio prominence with dense sampling in the millimetre wavelengths. This prompted us to study the connection of the 37 GHz event with other wavelength domains. At 37 GHz, the prominence was tracked to a height of around \(1.6~\mathrm{R}_{\odot}\), at which the loop structure collapsed. The average velocity of the radio prominence was \(55 \pm 6~\mbox{km}\,\mbox{s}^{-1}\). The brightness temperature of the prominence varied between \(800 \pm 100\) K and \(3200 \pm 100\) K. We compared our data with the Solar Dynamic Observatory (SDO)/Atmospheric Imaging Assembly (AIA) instrument’s 304 Å EUV data, and found that the prominence behaves very similarly in both wavelengths. The EUV data also reveal flaring activity nearby the prominence. We present a scenario in which this flare works as a trigger that causes the prominence to move from a stable stage to an acceleration stage.  相似文献   

18.
Seven-year-long seeing-free observations of solar magnetic fields with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) were used to study the sources of the solar mean magnetic field, SMMF, defined as the net line-of-sight magnetic flux divided over the solar disk area. To evaluate the contribution of different regions to the SMMF, we separated all the pixels of each SDO/HMI magnetogram into three subsets: weak (\(B^{\mathrm{W}}\)), intermediate (\(B^{\mathrm{I}}\)), and strong (\(B^{\mathrm{S}}\)) fields. The \(B^{\mathrm{W}}\) component represents areas with magnetic flux densities below the chosen threshold; the \(B^{\mathrm{I}}\) component is mainly represented by network fields, remains of decayed active regions (ARs), and ephemeral regions. The \(B^{\mathrm{S}}\) component consists of magnetic elements in ARs. To derive the contribution of a subset to the total SMMF, the linear regression coefficients between the corresponding component and the SMMF were calculated. We found that i) when the threshold level of 30 Mx?cm?2 is applied, the \(B^{\mathrm{I}}\) and \(B^{\mathrm{S}}\) components together contribute from 65% to 95% of the SMMF, while the fraction of the occupied area varies in a range of 2?–?6% of the disk area; ii) as the threshold magnitude is lowered to 6 Mx?cm?2, the contribution from \(B^{\mathrm{I}}+B^{\mathrm{S}}\) grows to 98%, and the fraction of the occupied area reaches a value of about 40% of the solar disk. In summary, we found that regardless of the threshold level, only a small part of the solar disk area contributes to the SMMF. This means that the photospheric magnetic structure is an intermittent inherently porous medium, resembling a percolation cluster. These findings suggest that the long-standing concept that continuous vast unipolar areas on the solar surface are the source of the SMMF may need to be reconsidered.  相似文献   

19.
We aim to probe the dynamic structure of the extended Solar neighborhood by calculating the radial metallicity gradients from orbit properties, which are obtained for axisymmetric and non-axisymmetric potential models, of red clump (RC) stars selected from the RAdial Velocity Experiment’s Fourth Data Release. Distances are obtained by assuming a single absolute magnitude value in near-infrared, i.e. \(M_{Ks}=-1.54\pm0.04\) mag, for each RC star. Stellar orbit parameters are calculated by using the potential functions: (i) for the MWPotential2014 potential, (ii) for the same potential with perturbation functions of the Galactic bar and transient spiral arms. The stellar age is calculated with a method based on Bayesian statistics. The radial metallicity gradients are evaluated based on the maximum vertical distance (\(z_{max}\)) from the Galactic plane and the planar eccentricity (\(e_{p}\)) of RC stars for both of the potential models. The largest radial metallicity gradient in the \(0< z_{max} \leq0.5\) kpc distance interval is \(-0.065\pm0.005~\mbox{dex}\,\mbox{kpc}^{-1}\) for a subsample with \(e_{p}\leq0.1\), while the lowest value is \(-0.014\pm0.006~\mbox{dex}\,\mbox{kpc}^{-1}\) for the subsample with \(e_{p}\leq0.5\). We find that at \(z_{max}>1\) kpc, the radial metallicity gradients have zero or positive values and they do not depend on \(e_{p}\) subsamples. There is a large radial metallicity gradient for thin disc, but no radial gradient found for thick disc. Moreover, the largest radial metallicity gradients are obtained where the outer Lindblad resonance region is effective. We claim that this apparent change in radial metallicity gradients in the thin disc is a result of orbital perturbation originating from the existing resonance regions.  相似文献   

20.
A stationary Type IV (IVs) radio burst was observed on September 24, 2011. Observations from the Nançay RadioHeliograph (NRH) show that the brightness temperature (\(T_{\mathrm{B}}\)) of this burst is extremely high, over \(10^{11}\) K at 150 MHz and over \(10^{8}\) K in general. The degree of circular polarization (\(q\)) is between \(-60\% \sim -100\%\), which means that it is highly left-handed circularly polarized. The flux–frequency spectrum follows a power-law distribution, and the spectral index is considered to be roughly \(-3 \sim -4\) throughout the IVs. Radio sources of this event are located in the wake of the coronal mass ejection and are spatially dispersed. They line up to present a formation in which lower-frequency sources are higher. Based on these observations, it is suggested that the IVs was generated through electron cyclotron maser emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号