首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The analysis of narrowband drifting of type III-like structures in radio bursts dynamic spectra allows one to obtain unique information about the primary energy release mechanisms in solar flares. The SSRT (Siberian Solar Radio Telescope) spatially resolved images and its high spectral and temporal resolution allow for direct determination not only of the source positions but also of the exciter velocities along the flare loop. Practically, such measurements are possible during some special time intervals when SSRT is observing the flare region in two high-order fringes near 5.7?GHz; thus, two 1D brightness distributions are recorded simultaneously at two frequency bands. The analysis of type III-like bursts recorded during the flare 14?April 2002 is presented. Using multiwavelength radio observations recorded by the SSRT, the Huairou Solar Broadband Radio Spectrometer (SBRS), the Nobeyama Radio Polarimeters (NoRP), and the Radio Solar Telescope Network (RSTN), we study an event with series of several tens of drifting microwave pulses with drift rates in the range from ?7 to 13?GHz?s?1. The sources of the fast-drifting bursts were located near the top of a flare loop in a volume of a few Mm in size. The slow drift of the exciters along the flare loop suggests a high pitch anisotropy of the emitting electrons.  相似文献   

2.
We study a solar flare that occurred on 10 September 2002, in active region NOAA 10105, starting around 14:52 UT and lasting approximately 5 minutes in the radio range. The event was classified as M2.9 in X-rays and 1N in Hα. Solar Submillimeter Telescope observations, in addition to microwave data, give a good spectral coverage between 1.415 and 212 GHz. We combine these data with ultraviolet images, hard and soft X-ray observations, and full-disk magnetograms. Images obtained from Ramaty High Energy Solar Spectroscopic Imager data are used to identify the locations of X-ray sources at different energies, and to determine the X-ray spectrum, while ultraviolet images allow us to characterize the coronal flaring region. The magnetic field evolution of the active region is analyzed using Michelson Doppler Imager magnetograms. The burst is detected at all available radio frequencies. X-ray images (between 12 keV and 300 keV) reveal two compact sources. In the 212 GHz data, which are used to estimate the radio-source position, a single compact source is seen, displaced by 25″ from one of the hard X-ray footpoints. We model the radio spectra using two homogeneous sources, and we combine this analysis with that of hard X-rays to understand the dynamics of the accelerated particles. Relativistic particles, observed at radio wavelengths above 50 GHz, have an electron index evolving with the typical soft–hard–soft behavior.  相似文献   

3.
Garaimov  V.I.  Kundu  M.R. 《Solar physics》2002,207(2):355-367
We present the results of an analysis of a flare event of importance M2.8 that occurred at 00:56 UT 28 August 1999. The analysis is based upon observations made with the Nobeyama radioheliograph (NoRH) and polarimeters (NoRP), TRACE, SOHO/MDI, EIT, and Yohkoh/SXT. The images show a very complex flaring region. Pre-flare TRACE and EIT images at 00:24 UT show a small brightening in the region before the flare occurred. The active region in which the flare occurred had evolving magnetic fields, and new magnetic flux seems to have emerged. The X-ray and radio time profiles for this event show a double-peaked structure. The polarimeter data showed that the maximum radio emission (1200 s.f.u.) occurred at 9.4 GHz. At 17 GHz the NoRH images appear to show four different radio sources including the main spot and the main flare loop. Most of the microwave emission seems to originate from the main flare loop. Comparison of BATSE and microwave time profiles at 17 and 34 GHz from the main sunspot source shows that these profiles have similar structures and they coincide with the hard X-ray peaks. The maximum of the flare loop emission was delayed by 10 s relative to the second maximum of the sunspot associated flare emission. Analysis of SXT images during the post-flare phase shows a complex morphology – several intersecting loops and changes in the shape of the main flare loop.  相似文献   

4.
This is the first of four companion papers, which comprehensively analyze a complex eruptive event of 18 November 2003 in active region (AR) 10501 and the causes of the largest Solar Cycle 23 geomagnetic storm on 20 November 2003. Analysis of a complete data set, not considered before, reveals a chain of eruptions to which hard X-ray and microwave bursts responded. A filament in AR 10501 was not a passive part of a larger flux rope, as usually considered. The filament erupted and gave origin to a coronal mass ejection (CME). The chain of events was as follows: i) a presumable eruption at 07:29 UT accompanied by a not reported M1.2 class flare probably associated with the onset of a first southeastern CME (CME1), which most likely is not responsible for the superstorm; ii) a confined eruption (without a CME) at 07:41 UT (M3.2 flare) that destabilized the large filament; iii) the filament acceleration around 07:56 UT; iv) the bifurcation of the eruptive filament that transformed into a large “cloud”; v) an M3.9 flare in AR 10501 associated to this transformation. The transformation of the filament could be due to the interaction of the eruptive filament with the magnetic field in the neighborhood of a null point, located at a height of about 100 Mm above the complex formed by ARs 10501, 10503, and their environment. The CORONAS-F/SPIRIT telescope observed the cloud in 304 Å as a large Y-shaped darkening, which moved from the bifurcation region across the solar disk to the limb. The masses and kinematics of the cloud and the filament were similar. Remnants of the filament were not clearly observed in the second southwestern CME (CME2), previously regarded as a source of the 20 November geomagnetic storm. These facts do not support a simple scenario, in which the interplanetary magnetic cloud is considered as a flux rope formed from a structure initially associated with the pre-eruption filament in AR 10501. Observations suggest a possible additional eruption above the bifurcation region close to solar disk center between 08:07 and 08:17 UT, which could be the source of the 20 November superstorm.  相似文献   

5.
We use a variety of ground-based and satellite measurements to identify the source of the ground level event (GLE) beginning near 06∶30 UT on 21 August, 1979 as the 2B flare with maximum at ~06∶15 UT in McMath region 16218. This flare differed from previous GLE-associated flares in that it lacked a prominent impulsive phase, having a peak ~9 GHz burst flux density of only 27 sfu and a ?20 keV peak hard X-ray flux of ?3 × 10-6 ergs cm-2s-1. Also, McMath 16218 was magnetically less complex than the active regions in which previous cosmic-ray flares have occurred, containing essentially only a single sunspot with a rudimentary penumbra. The flare was associated with a high speed (?700 km s-1) mass ejection observed by the NRL white light coronagraph aboard P78-1 and a shock accelerated (SA) event observed by the low frequency radio astronomy experiment on ISEE-3.  相似文献   

6.
7.
A review is given of observations and theories relevant to the solar flare of 21 May, 1980, 20 ∶ 50 UT, the best studied flare on record. For more than 30 hr before the flare there was filament activation and plasma heating to above 10 MK. A flare precursor was present ≥6 min before the flare onset. The flare started with filament activation (20 ∶ 50 UT), followed by thick-target heating of two footpoints and subsequent ablation and convective evaporation involving energies of 1 to 2 × 1031 erg. Coronal explosions occurred at 20 ∶ 57 UT (possibly associated with a type-II burst) and at 21 ∶ 04 UT (associated with an Hα spray?). Post-flare loops were first seen at 20 ∶ 57 UT, and their upward motion is interpreted as a manifestation of successive field-line reconnections. A type-IV radio burst which later changed into a type-I noise storm was related to a giant coronal arch located just below the radio noise storm region. Some implications and difficulties these observations present to current flare theories are mentioned.  相似文献   

8.
The SOL2001-12-26 moderate solar eruptive event (GOES importance M7.1, microwaves up to 4000 sfu at 9.4 GHz, coronal mass ejection (CME) speed 1446 km?s?1) produced strong fluxes of solar energetic particles and ground-level enhancement (GLE) of cosmic-ray intensity (GLE63). To find a possible reason for the atypically high proton outcome of this event, we study multi-wavelength images and dynamic radio spectra and quantitatively reconcile the findings with each other. An additional eruption probably occurred in the same active region about half an hour before the main eruption. The latter produced two blast-wave-like shocks during the impulsive phase. The two shock waves eventually merged around the radial direction into a single shock traced up to \(25~\mathrm{R}_{\odot}\) as a halo ahead of the expanding CME body, in agreement with an interplanetary Type II event recorded by the Radio and Plasma Wave Investigation (WAVES) experiment on the Wind spacecraft. The shape and kinematics of the halo indicate an intermediate regime of the shock between the blast wave and bow shock at these distances. The results show that i) the shock wave appeared during the flare rise and could accelerate particles earlier than usually assumed; ii) the particle event could be amplified by the preceding eruption, which stretched closed structures above the developing CME, facilitated its lift-off and escape of flare-accelerated particles, enabled a higher CME speed and stronger shock ahead; iii) escape of flare-accelerated particles could be additionally facilitated by reconnection of the flux rope, where they were trapped, with a large coronal hole; and iv) the first eruption supplied a rich seed population accelerated by a trailing shock wave.  相似文献   

9.
Baolin Tan 《Solar physics》2008,253(1-2):117-131
From the observations with the Chinese Solar Broadband Radiospectrometer (SBRS/Huairou) in the frequency range of 1.10?–?2.06 GHz and 2.60?–?3.80 GHz during 2004?–?2006, we select 14 flare events which were associated with numerous fast microwave subsecond pulsating structures (period: P<0.5 s). In order to describe these subsecond pulsating structures comprehensively, we defined a set of observable parameters including emission frequency (f 0), bandwidth (b w), polarization degree (r), period (P), duration (D), modulation depth (M), quality factor (Q), single pulse frequency drifting rate (R spfd), global frequency drifting rate (R gfd), and symmetrical factor of the pulse profile (S). Then based on a detailed analysis of the spectrograms of the fast pulsations which occurred in one of these flares (an X3.4 flare/CME event occurred on 13 Dec. 2006), we discuss the possible relations among these observable parameters and their physical implications for the dynamical processes of solar eruptive events, and applied them to interpret the nature of the pulsations in the flare/CME event. Such study of microwave periodic pulsations provides us with a useful tool to probe the details of the flare kernels, and understand the physical mechanism of solar eruptive processes.  相似文献   

10.
Wang  Shujuan  Yan  Yihua  Zhao  Ruizhen  Fu  Qijun  Tan  Chengming  Xu  Long  Wang  Shijin  Lin  Huaan 《Solar physics》2001,204(1-2):153-164
25 MHz–7.6 GHz global and detailed (fine structure – FS) radio spectra are presented, which were observed in the NOAA 9077 active region for the Bastille Day (14 July 2000) flare at 10:10–11:00 UT. Besides broadband radio bursts, high-resolution dynamic spectra reveal metric type II burst, decimetric type IV burst and various decimetric and microwave FSs, such as type III bursts, type U bursts, reverse-slope (RS)-drifting burst, fiber bursts, patch and drifting pulsation structure (DPS). The peak-flux-density spectrum of the radio bursts over the range 1.0–7.6 GHz globally appears as a U-shaped signature. Analyzing the features of backbone and herringbones of the type II burst, the speeds of shock and relevant energetic electron beams were estimated to be 1100 km s−1 and 58 500 km s−1, respectively. Also the time sequence of the radio emission is analyzed by comparing with the hard X-rays (HXRs) and the soft X-rays (SXRs) in this flare. After the maxima of the X-rays, the radio emission in the range 1.0–7.6 GHz reached maxima first at the higher frequency, then drifted to the lower frequency. This comparison suggested that the flare included three successive processes: firstly the X-rays rose and reached maxima at 10:10–10:23 UT, accompanied by fine structures only in the range 2.6–7.6 GHz; secondly the microwave radio emission reached maxima accompanied by many fine structures over the range 1.0–7.6 GHz at 10:23–10:34 UT; then a decimetric type IV burst and its associated FSs (fibers) in the range 1.0–2.0 GHz appeared after 10:40 UT.  相似文献   

11.
We have carried out this work to comprehend the possible mechanisms of the first ground level enhancement (GLE71 17 May 2012 01:50 UT) in cosmic ray intensity of the solar cycle 24. For this, the cosmic ray intensities registered by neutron monitors at several sites have been analyzed and studied with concurrent solar flares of different energy channels. To assess empirically whether the GLE might have been caused by the energy released from solar flare or CME-driven shock, we identify the possible time line in terms of the lowest spectral index determined from proton fluxes. If the GLE is caused by the energy released from particle acceleration in solar flare, the intensive phase of the flare representing the extreme emission should exist within/around the possible time line. In this respect, it is observed that the possible time line lies within the prominent phase of CME-driven shock. For better understanding, we have checked the possible relativistic energy with respect to solar flare as well as CME-driven shock. As witnessed, if the extreme emission phase of the flare is considered as the reason for the causation of GLE peak, the flare components procured insufficient amount of energy (≤~0.085 GeV) to produce a GLE. If the extreme emission phase of the flare is also considered as the dominator along GLE onset, the possible energy procurement (≤~0.414 GeV) is still not adequate to produce a GLE. In contrast, the CME-driven shock is capable of procuring enough possible relativistic energy (≥~1.21 GeV) that is sufficient amount of the energy for a GLE production. Any amount of the energy (<0.414 GeV) released from preceding flare components is supposed to have been contributed to the shock process. Thus, it is assumed that the GLE71 was possibly caused by the energy released from the shock acceleration, which might have been boosted by the energy emanated from preceding flare.  相似文献   

12.
Silva  Adriana V.R.  Lin  R.P.  de Pater  Imke  White  Stephen M.  Shibasaki  K.  Nakajima  H. 《Solar physics》1998,183(2):389-405
We present a comprehensive analysis of the 17 August 1994 flare, the first flare imaged at millimeter (86 GHz) wavelengths. The temporal evolution of this flare displays a prominent impulsive peak shortly after 01:02 UT, observed in hard X-rays and at microwave frequencies, followed by a gradual decay phase. The gradual phase was also detected at 86 GHz. Soft X-ray images show a compact emitting region (20), which is resolved into two sources: a footpoint and a loop top source. Nonthermal emissions at microwave and hard X-ray wavelengths are analyzed and the accelerated electron spectrum is calculated. This energy spectrum derived from the microwave and hard X-ray observations suggests that these emissions were created by the same electron population. The millimeter emission during the gradual phase is thermal bremsstrahlung originating mostly from the top of the flaring loop. The soft X-rays and the millimeter flux density from the footpoint source are only consistent with the presence of a multi-temperature plasma at the footpoint.  相似文献   

13.
Simultaneous microwave and X-ray observations are presented for a solar flare detected on May 8, 1980 starting at 19:37 UT. The X-ray observations were made with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and covered the energy range from 28–490 keV with a time resolution of 10 ms. The microwave observations were made with the 5 and 45 foot antennas at the Itapetinga Radio Observatory at frequencies of 7 and 22 GHz, with time resolutions of 100 ms and 1 ms, respectively. Detailed correlation analysis of the different time profiles of the event show that the major impulsive peaks in the X-ray flux preceded the corresponding microwave peaks at 22 GHz by about 240 ms. For this particular burst the 22 GHz peaks preceded the 7 GHz by about 1.5 s. Observed delays of the microwave peaks are too large for a simple electron beam model but they can be reconciled with the speeds of shock waves in a thermal model.  相似文献   

14.
During two extreme bursts of solar activity in March–April 2001 and October–November 2003, the ground-based neutron monitor network recorded a series of outstanding events distinguished by their magnitude and unusual peculiarities. The important changes that lead to increased activity initiated not with the sunspot appearance, but with the large-scale solar magnetic field reconfiguration. A series of strong and moderate magnetic storms and powerful proton events (including ground-level enhancements, GLE) were registered during these periods. The largest and most productive in the 23rd solar cycle, active region 486, generated a significant series of solar flares among which the 4 November 2003 flare (X28/3B) was the most powerful X-ray solar event ever observed. The fastest arrival of the interplanetary disturbance from the Sun (after August 1972) and the highest solar wind velocity and IMF intensity were recorded during these events. Within 1 week, three GLEs of solar cosmic rays were registered by the neutron monitor network (28 and 29 October and 2 November 2003). In this work, we perform a tentative analysis of a number of the effects seen in cosmic rays during these two periods, using the neutron monitor network and other relevant data.  相似文献   

15.
Yan  Yihua  Aschwanden  Markus J.  Wang  Shujuan  Deng  Yuanyong 《Solar physics》2001,204(1-2):27-40
The finite energy force-free magnetic fields of the active region NOAA 9077 on 14 July 2000 above the photosphere were reconstructed. We study the evolution of the 3D magnetic field structures in AR 9077 and compare the reconstructed field lines with TRACE EUV 171 Å flare loops during the flare maximum, which confirms the process that flaring loops extended from lower sheared level to higher arcades. We also demonstrate the 3D magnetic field evolution before the 3B/X5.7 flare on 14 July and the magnetic structure after the flare on 15 July. This shows that the helical magnetic structures were significantly changed, suggesting that the flux rope was indeed erupted during the energetic flare at 10:24 UT on 14 July.  相似文献   

16.
We analyze the multiwavelength observations of an M2.9/1N flare that occurred in the active region (AR) NOAA 11112 in the vicinity of a huge filament system on 16 October 2010. SDO/HMI magnetograms reveal the emergence of a bipole (within the existing AR) 50 hours prior to the flare event. During the emergence, both the positive and negative sunspots in the bipole show translational as well as rotational motion. The positive-polarity sunspot shows significant motion/rotation in the south-westward/clockwise direction, and we see continuously pushing/sliding of the surrounding opposite-polarity field region. On the other hand, the negative-polarity sunspot moves/rotates in the westward/anticlockwise direction. The positive-polarity sunspot rotates ≈?70° within 30 hours, whereas the one with negative polarity rotates ≈?20° within 10 hours. SDO/AIA 94 Å EUV images show the emergence of a flux tube in the corona, consistent with the emergence of the bipole in HMI. The footpoints of the flux tube were anchored in the emerging bipole. The initial brightening starts at one of the footpoints (western) of the emerging loop system, where the positive-polarity sunspot pushes/slides towards a nearby negative-polarity field region. A high speed plasmoid ejection (speed ≈?1197 km?s?1) was observed during the impulsive phase of the flare, which suggests magnetic reconnection of the emerging positive-polarity sunspot with the surrounding opposite-polarity field region. The entire AR shows positive-helicity injection before the flare event. Moreover, the newly emerging bipole reveals the signature of a negative (left-handed) helicity. These observations provide unique evidence of the emergence of twisted flux tubes from below the photosphere to coronal heights, triggering a flare mainly due to the interaction between the emerging positive-polarity sunspot and a nearby negative-polarity sunspot by the shearing motion of the emerging positive sunspot towards the negative one. Our observations also strongly support the idea that the rotation can most likely be attributed to the emergence of twisted magnetic fields, as proposed by recent models.  相似文献   

17.
We analyze the 26 November 2005 solar radio event observed interferometrically at frequencies of 244 and 611 MHz by the Giant Metrewave Radio Telescope (GMRT) in Pune, India. These observations are used to make interferometric maps of the event at both frequencies with the time cadence of 1 s from 06:50 to 07:12 UT. These maps reveal several radio sources. The light curves of these sources show that only two sources at 244 MHz and 611 MHz are well correlated in time. The EUV flare is more localized with flare loops located rather away from the radio sources. Using SoHO/MDI observations and potential magnetic field extrapolation we demonstrate that both the correlated sources are located in the fan structure of magnetic field lines starting from a coronal magnetic null point. Wavelet analysis of the light curves of the radio sources detects tadpoles with periods in the range P=10?–?83 s. These wavelet tadpoles indicate the presence of fast magnetoacoustic waves that propagate in the fan structure of the coronal magnetic null point. We estimate the plasma parameters in the studied radio sources and find them consistent with the presented scenario involving the coronal magnetic null point.  相似文献   

18.
We investigate the origin of the increasing spectra observed at submillimeter wavelengths detected in the flare on 2 November 2003 starting at 17:17 UT. This flare, classified as an X8.3 and 2B event, was simultaneously detected by RHESSI and the Solar Submillimeter Telescope (SST) at 212 and 405 GHz. Comparison of the time profiles at various wavelengths shows that the submillimeter emission resembles that of the high-energy X rays observed by RHESSI whereas the microwaves observed by the Owens Valley Solar Array (OVSA) resemble that of ∼50 keV X rays. Moreover, the centroid position of the submillimeter radiation is seen to originate within the same flaring loops of the ultraviolet and X-ray sources. Nevertheless, the submillimeter spectra are distinct from the usual microwave spectra, appearing to be a distinct spectral component with peak frequency in the THz range. Three possibilities to explain this increasing radio spectra are discussed: (1) gyrosynchrotron radiation from accelerated electrons, (2) bremsstrahlung from thermal electrons, and (3) gyrosynchrotron emission from the positrons produced by pion or radioactive decay after nuclear interactions. The latter possibility is ruled out on the grounds that to explain the submillimeter observations requires 3000 to 2×105 more positrons than what is inferred from X-ray and γ-ray observations. It is possible to model the emission as thermal; however, such sources would produce too much flux in the ultraviolet and soft X-ray wavelengths. Nevertheless we are able to explain both spectral components at microwave and submillimeter wavelengths by gyrosynchrotron emission from the same population of accelerated electrons that emit hard X rays and γ rays. We find that the same 5×1035 electrons inferred from RHESSI observations are responsible for the compact submillimeter source (0.5 arcsec in radius) in a region of 4500 G low in the atmosphere, and for the traditional microwave spectral component by a more extended source (50 arcsec) in a 480 G magnetic field located higher up in the loops. The extreme values in magnetic field and source size required to account for the submillimeter emission can be relaxed if anisotropy and transport of the electrons are taken into account.  相似文献   

19.
Ground-level enhancements (GLEs) are defined as sudden increases in the recorded intensity of cosmic-ray particles, usually by neutron monitors (NMs). In this work we present a time-shifting analysis (TSA) for the first arriving particles that were detected at Earth by NMs. We also present an automated real-time GLE alert that has been developed and is operating via the Neutron Monitor Database (NMDB), which successfully identified the 17 May 2012 event, designated as GLE71. We discuss the time evolution of the real-time GLE alert that was issued for GLE71 and present the event onset-time for NMs that contributed to this GLE alert based on their archived data. A comparison with their real-time time-stamp was made to illustrate the necessity for high-resolution data (e.g. 1-min time resolution) made available at every minute. The first results on the propagation of relativistic protons that have been recorded by NMs, as inferred by the TSA, imply that they are most probably accelerated by the coronal-mass-ejection-driven shock. Furthermore, the successful usage of NM data and the corresponding achievement of issuing a timely GLE alert are discussed.  相似文献   

20.
The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39?–?11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (\(\gtrsim 300\) keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号