首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
探讨星像的定位问题,提出一种用于实测资料分析与处理的最大相关估计方法。通过理论分析和模拟计算均表明,采用此方法后,定位精度和可处理的极限星等较之传统定位估计都大为提高。对上千颗星观测资料的处理结果也显示,最大相关处理所获得的单星精度要比中数法提高0.045”,同时本方法还大大提高了对极低信噪比观测资料的处理能力。  相似文献   

2.
Observations of the forbidden coronal lines Fe xiv 530.3 nm and Fe x 637.4 nm obtained at the National Solar Observatory at Sacramento Peak are used to determine the variation of coronal temperature at latitudes above 30 during solar activity cycles 21–23. Features of the long-term variation of emission in the two lines are also discussed. Temperatures at latitudes below 30 are not studied because the technique used to determine the coronal temperature is not applicable in active regions. The polar temperature varies cyclically from approximately 1.3 to 1.7 MK. The temperatures are similar in both hemispheres. The temperature near solar minimum decreases strongly from mid-latitudes to the poles. The temperature of the corona above 80 latitude generally follows the sunspot cycle, with minima in 1985 and 1995–1996 (cf. 1986 and 1996 for the smoothed sunspot number, Rz) and maxima in 1989 and 2000 (cf. 1989 and 2000 for Rz). The temperature of the corona above 30 latitude at solar maximum is nearly uniform, i.e., there is little latitude dependence. If the maximum temperatures of cycles 22 and 23 are aligned in time (superposed epochs), the average annual N + S temperature (average of the northern and southern hemisphere) in cycle 23 is hotter than that in cycle 22 at all times both above 80 latitude and above 30 latitude. The difference in the average annual N + S maximum temperature between cycles 23 and 22 was 56 kK near the poles and 64 kK for all latitudes above 30. Cycle 23 was also hotter at mid-latitudes than cycle 22 by 60 kK. The last 3 years of cycle 21 were hotter than the last 3 years of cycle 22. The difference in average annual N + S temperatures at the end of cycles 21 and 22 was 32 kK near the poles and 23 kK for all latitudes above 30. Cycle 21 was also hotter at mid-latitudes than cycle 22 by at least 90 kK. Thus, there does not seem to be a solar-cycle trend in the low-coronal temperature outside of active regions.  相似文献   

3.
We present new results on the recently discovered 69 ms X-ray pulsar AXS J161730-505505, the sixth youngest example of a rotation-powered pulsar. We have undertaken a comprehensive X-ray-observing campaign of AXS J161730-505505 with the ASCA, BeppoSAX, and RXTE observatories and follow its long-term spin-down history between 1989 and 1999 using these observations and archival Ginga and ASCA data sets. The spin-down is not simply described by a linear function as originally thought, but instead we find evidence of a giant glitch (DeltaP&solm0;P greater, similar10-6) between 1993 August and 1997 September, perhaps the largest yet observed from a young pulsar. The glitch is well described by steps in P and P&d2; accompanied by a persistent P&d3; similar to those seen in the Vela pulsar. The pulse profile of AXS J161730-505505 presents a single asymmetric peak that is maintained over all observation epochs. The energy spectrum is also steady over time, characterized by a highly absorbed power law with a photon index Gamma=1.4+/-0.2, consistent with that found for other young rotation powered pulsars.  相似文献   

4.
The series of nine impulsive, highly collimated beams of near-relativistic electrons seen by ACE/EPAM on 26 and 27 June 2004 occurred at a quiet time with respect to solar flare and CME production. However, they were accompanied by decametric type III radio bursts observed by WIND/WAVES, which had progressively higher starting frequencies, suggestive of coronal acceleration. There were no CMEs seen by SOHO/LASCO in association with any of the type III bursts except possibly the first. The energy spectrum of the electrons was soft, typically E−4.5 but extended up to at least ∼200 keV. We suggest that the source region for these events is in the high corona. We discuss this result in the context of solar electron acceleration at other times.  相似文献   

5.
In the solar atmosphere a new phenomenon is discovered, namely, the formation, growth, and disappearance of mushrooms as a consequence of eruptive processes. This phenomenon gives an insight into many geometric and physical properties of coronal mass ejections (CME).  相似文献   

6.
We continued a study of the long-term variations of temperature in the solar corona at all latitudes (Makarov, Tlatov, and Callebaut, 2002a). The series of the green (Fe xiv 530.3 nm; KI5303) and red (Fe x 637.4 nm; KI6374) coronal intensities for 1957–2002 has been obtained using the coronal observations at the Kislovodsk Solar Station. The mean monthly coronal intensities have been calculated at all latitudes (0–90˚) and in the high latitude (45–90˚) zones. It was found that the value of KI6374/KI5303increased about 2.0 times at the high latitudes during the last 45 years. This corresponds to a decrease of the average temperature by 0.1 ×106K of the polar corona. We suppose that a polar decrease of coronal temperature is connected with an increase of the area of polar zones A PZoccupied by unipolar magnetic fields (Makarov et al., 2002) and, probably, with an increase of the area of polar coronal holes. The maximum ratio KI6374/KI5303is observed during the minimum sunspot activity.  相似文献   

7.
We examine the uncertainties in two plasma parameters from their true values in a simulated asymmetric corona. We use the Corona Heliosphere (CORHEL) and Magnetohydrodynamics Around the Sphere (MAS) models in the Community Coordinated Modeling Center (CCMC) to investigate the differences between an assumed symmetric corona and a more realistic, asymmetric one. We were able to predict the electron temperatures and electron bulk flow speeds to within ±?0.5 MK and ±?100 km?s?1, respectively, over coronal heights up to 5.0 R from Sun center. We believe that this technique could be incorporated in next-generation white-light coronagraphs to determine these electron plasma parameters in the low solar corona. We have conducted experiments in the past during total solar eclipses to measure the thermal electron temperature and the electron bulk flow speed in the radial direction in the low solar corona. These measurements were made at different altitudes and latitudes in the low solar corona by measuring the shape of the K-coronal spectra between 350 nm and 450 nm and two brightness ratios through filters centered at 385.0 nm/410.0 nm and 398.7 nm/423.3 nm with a bandwidth of ≈?4 nm. Based on symmetric coronal models used for these measurements, the two measured plasma parameters were expected to represent those values at the points where the lines of sight intersected the plane of the solar limb.  相似文献   

8.
We detect and analyze the oscillatory behavior of waves using a coronal seismology tool on sequences of coronal images. We study extreme-ultraviolet image sequences of active and quiet Sun regions and of coronal holes we identify 3- and 5-minute periodicities. In each studied region the 3- and 5-minute periodicities are similarly frequent. The number of pixels exhibiting a 3-minute periodicity is between 6 %?–?8 % and those pixels exhibiting a 5-minute periodicity is between 5 %?–?9 % of the total number of observed pixels. Our results show 3-minute oscillations along coronal loop structures but do not show 5-minute oscillations along these same loop structures. The number of pixels exhibiting 3- and 5-minute periodicities in one type of region (active Sun, quiet Sun, and coronal holes) is roughly the same for all observed regions, leading us to infer that the 3- and 5-minute oscillations are the result of a global mechanism.  相似文献   

9.
With a view to investigate variations in parameters of coronal emission lines over a large range of radial distance from the limb, raster scans were made with sufficiently long exposure times on several days during September – October 2003. An analysis of the data shows that (i) in most of the coronal structures, the FWHM of the Fe xiv 5303 Å line decreases up to 300″±50″, (ii) the FWHM of the Fe x 6374 Å line increases up to about 200″ and then remains unchanged up to about 500″, and (iii) the FWHMs of the Fe xi 7892 Å and Fe xiii 10747 Å lines show an intermediate behaviour with height. The analysis of the data also shows that the ratio of FWHM of 6374 Å to that of 5303 Å increases from 0.93 at the limb to 1.18 at 200″ above the limb. From this and the ratio of intensities of the two lines we infer that the plasma in steady coronal structures at a height of about 200″ has a temperature of about 1.5 MK and a non-thermal velocity around 17 km s?1. The observations also show that non-homogeneous temperatures and non-thermal velocities largely exist in the lower corona up to about 300″±100″ above the limb. Amplitudes of variations in FWHM of different emission lines with height in the coronal loops are similar to those in the diffuse plasma around the coronal loops.  相似文献   

10.
Coronal Mass Ejections (CMEs) are challenging objects to detect using automated techniques, due to their high velocity and diffuse, irregular morphology. A necessary step to automating the detection process is to first remove the subjectivity introduced by the observer used in the current, standard, CME detection and tracking method. Here we describe and demonstrate a multiscale edge detection technique that addresses this step and could serve as one part of an automated CME detection system. This method provides a way to objectively define a CME front with associated error estimates. These fronts can then be used to extract CME morphology and kinematics. We apply this technique to a CME observed on 18 April 2000 by the Large Angle Solar COronagraph experiment (LASCO) C2/C3 and a CME observed on 21 April 2002 by LASCO C2/C3 and the Transition Region and Coronal Explorer (TRACE). For the two examples in this work, the heights determined by the standard manual method are larger than those determined with the multiscale method by ≈10% using LASCO data and ≈20% using TRACE data.  相似文献   

11.
Boris Filippov 《Solar physics》2013,283(2):401-411
A hyperbolic flux-tube configuration containing a null point below the flux rope is considered as a pre-eruptive state of coronal mass ejections that start simultaneously with flares. We demonstrate that this configuration is unstable and cannot exist for a long time in the solar corona. The inference follows from general equilibrium conditions and from analyzing simple models of the flux-rope equilibrium. A direct consequence of the stable flux-rope equilibrium in the corona are separatrices in the horizontal-field distribution in the chromosphere. They can be recognized as specific “herring-bone structures” in a chromospheric fibril pattern.  相似文献   

12.
The idea that coronal mass ejections (CMEs) pile up mass in their transport through the corona and heliosphere is widely accepted. However, it has not been shown that this is the case. We perform an initial study of the volume electron density of the fronts of 13 three-part CMEs with well-defined frontal boundaries observed with the Solar and Heliospheric Observatory/Large Angle and Spectrometric COronagraph (SOHO/LASCO) white-light coronagraphs. We find that, in all cases, the volume electron density decreases as the CMEs travel through the LASCO-C2 and -C3 fields of view, from \(2.6\,\mbox{--}\,30~\mbox{R}_{\odot}\). The density decrease follows closely a power law with an exponent of ?3, which is consistent with a simple radial expansion. This indicates that in this height regime there is no observed pile-up.  相似文献   

13.
尤建圻 《天文学进展》1999,17(4):299-308
近年来Yohkon,SOHO和Ulysses等飞船的上天大大提高了日冕观测的范围和精度。如SOHO上的LASCO使日冕可观测范围扩展到1.1-30R并有分光能力;Ulysses则可以取得黄道面外各纬度处的太阳风实地观测数据。这些资料为日冕物态研究提供了大量有用信息:Yohkoh的软X射线观测发现了大尺度冕环重联的证据;  相似文献   

14.
Using Hinode EUV Imaging Spectrometer (EIS) spectra recorded daily at Sun center from the end of 2006 to early 2011, we studied the long-term evolution of the quiet corona. The light curves of the higher temperature emission lines exhibit larger variations in sync with the solar activity cycle while the cooler lines show reduced modulation. Our study shows that the high temperature component of the corona changes in quiet regions, even though the coronal electron density remains almost constant there. The results suggest that heat input to the quiet corona varies with the solar activity cycle.  相似文献   

15.
This work aims at investigating unstable modes of oscillation of quasi-vertical two-dimensional current sheets with sheared magnetic fields under physical conditions typical for the solar corona. We use linear magnetohydrodynamic equations to obtain sets of unstable modes related to the longitudinal inhomogeneity of the current sheet. It is shown that these modes of current sheet oscillations can modulate the current sheet thickness along the polarity inversion line. Based on the obtained results, we propose a scenario which can naturally explain both the quasi-periodic pulsations of hard X-ray emission and the parallel movement of their double footpoint-like sources along the polarity inversion line observed in some eruptive two-ribbon solar flares.  相似文献   

16.
Benz  Arnold O.  Krucker  Säm 《Solar physics》1998,182(2):349-363
Sensitive observations of the quiet Sun observed by EIT on the SOHO satellite in high-temperature iron-line emission originating in the corona are presented. The thermal radiation of the quiet corona is found to fluctutate significantly, even on the shortest time scale of 2 min and in the faintest pixels. The power spectrum of the emission measure time variations is approximately a power law with an exponent of 1.79±0.08 for the brightest pixels and 1.69±0.08 for the average and the faintest pixels. The more prominent enhancements are identified with previously reported X-ray network flares (Krucker et al., 1997) above the magnetic network of the quiet chromosphere. In coronal EUV iron lines they are amenable to detailed analysis suggesting that the brightenings are caused by additional plasma injected from below and heated to slightly higher temperature than the preexisting corona. Statistical investigations are consistent with the hypothesis that the weaker emission measure enhancements originate from the same parent population. The power input derived from the impulsive brightenings is linearly proportional to the radiative loss in the observed part of the corona. The absolute amount of impulsive input is model-dependent. It cannot be excluded that it can satisfy the total requirement for heating. These observations give strong evidence that a significant fraction of the heating in quiet coronal regions is impulsive.  相似文献   

17.
We have studied the rotation of the solar corona using the images taken at a 9.4?nm wavelength by the AIA 094 instrument on board the Solar Dynamics Observatory (SDO) satellite. Our analysis implies that the solar corona rotates differentially. It appears that ??, the angular rotation velocity of the solar corona, does not only depend on heliographic latitude but is also a function of time, while the nature of the latter dependence remains unclear. Besides measurement errors, deviations ???? from the mean rotational speed are also caused by proper motion of the observed point source (the tracer) with respect to its surroundings. The spread in ?? values at a particular heliographic latitude is a real effect, not caused by measurement errors. Most of the observations carry relative error less than 1?% in???.  相似文献   

18.
A physical model of the solar transition region and corona is presented, in which plasma flows in rapidly-diverging coronal funnels and holes are described within the framework of a two-fluid model including wave-particle interactions. The ions are heated by wave dissipation and accelerated by the pressure gradient of high-frequency Alfvén waves, which are assumed to originate at the bottom of the magnetic network by small-scale reconnection. The heating is assumed to be due to cyclotron-resonant damping of the waves near the local ion gyrofrequency. The EUV emission lines observed by the SUMER spectrometer on SOHO show very strong broadenings, which seem to be ordered according to the ion charge-per-mass ratio and thus to indicate cyclotron-resonant heating by waves. Based on quasilinear theory, a closure scheme for anisotropic multi-component fluid equations is developed for the wave-particle interactions of the ions with Alfvén waves. The acceleration and heating rates are calculated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
In this paper, ten CME events viewed by the STEREO twin spacecraft are analyzed to study the deflections of CMEs during their propagation in the corona. Based on the three-dimensional information of the CMEs derived by the graduated cylindrical shell (GCS) model (Thernisien, Howard, and Vourlidas in Astrophys. J. 652, 1305, 2006), it is found that the propagation directions of eight CMEs had changed. By applying the theoretical method proposed by Shen et?al. (Solar Phys. 269, 389, 2011) to all the CMEs, we found that the deflections are consistent, in strength and direction, with the gradient of the magnetic energy density. There is a positive correlation between the deflection rate and the strength of the magnetic energy density gradient and a weak anti-correlation between the deflection rate and the CME speed. Our results suggest that the deflections of CMEs are mainly controlled by the background magnetic field and can be quantitatively described by the magnetic energy density gradient (MEDG) model.  相似文献   

20.
We have carried out a statistical analysis of the kinematical behavior of small white-light transients (blobs) as tracers of the slow solar wind. The characterization of these faint white-light structures gives us insight on the origin and acceleration of the slow solar wind. The vantage observing points provided by the SECCHI and LASCO instruments on board the STEREO and SOHO spacecraft, respectively, allow us to reconstruct the 3D trajectories of these blob-like features and hence calculate their deprojected kinematical parameters. We have studied 44 blobs revealed in LASCO C2/C3 and SECCHI COR2 data from 2007 to 2008, a period within the solar minimum between Solar Cycles 23 and 24. We found that the blobs propagate along approximately constant position angles with accelerations from 1.40 to \(15.34~\mbox{m}\,\mbox{s}^{-2}\) between 3.42 \(R_{\astrosun }\) and 14.80 \(R_{\astrosun }\), their radial sizes ranging between 0.57 \(R_{\astrosun }\) and 1.69 \(R_{\astrosun }\). We also studied the global corona magnetic field morphology for a subset of blobs using a potential field source surface model for cases where blob detachments persist for two to five days. The study of localized blob releases indicates that these plasma structures start their transit at a distance of \(\sim\,{3.40}~R_{\astrosun }\) and their origin is connected either with the boundaries of weak coronal holes or with streamers at equatorial latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号