首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have been performed on a transect along 130°30′ E from the Lena River delta (71°60′ N) to the continental slope and adjacent deepwater area (78°22′ N) of the Laptev Sea in September 2015. The structure of phytoplankton communities has distinct latitudinal zoning. The southern part of the shelf (southward of 73°10′ N), the most desalinated by riverine discharge, houses a phytoplankton community with a biomass of 175–840 mg/m2, domination of freshwater Aulacoseira diatoms, and significant contribution of green algae (both in abundance and biomass). The northern border for the distribution range of the southern complex of phytoplankton species lies between the 8 and 18 psu isohalines (~73°10′ N). The continental slope and deepwater areas of the Laptev Sea (north of 77°30′ N), with a salinity of >27 psu in the upper mixed layer, are populated by the community prevalently composed of Chaetoceros and Rhizosolenia diatoms, very abundant in the Arctic, and dinoflagellates. The phytoplankton number in this area fall in the range of 430–1100 × 106 cell/m2, and the biomass, in the range of 3600 mg/m2. A moderate desalinating impact of the Lena River discharge is observed in the outer shelf area between 73°20′ and 77°30′ N; the salinity in the upper mixed layer is 18–24 psu. The phytocenosis in this area has a mosaic spatial structure with between-station variation in the shares of different alga groups in the community, cell number of 117–1200 × 106 cells/m2, and a biomass of 1600–3600 mg/m2. As is shown, local inflow of “fresh” nutrients to the euphotic layer in the fall season leads to mass growth of diatoms.  相似文献   

2.
黄海绿潮分布年际变化特征分析   总被引:2,自引:1,他引:1  
郭伟  赵亮  李秀梅 《海洋学报》2016,38(12):36-45
2008-2015年,连续8年在黄海海域暴发大规模绿潮,但因暴发时间、规模及漂移路径的不同,对沿海地区造成的环境影响和经济损失大不相同。本文利用EOS/MODIS卫星的多通道资料,采用NDVI算法获取绿潮信息,给出了2007年以来5-8月所有无云或少云晴朗天气下黄海海面绿潮的分布情况。黄海绿潮覆盖面积变化每年呈现单峰值分布,MODIS卫星在5月中旬至6月初首次发现绿潮,随后30~40 d内达到覆盖面积峰值,7月快速消退,8月上旬完全消失。2007年绿潮出现首年覆盖面积极低,发现绿潮时面积均未超过50 km2;2008年和2009年绿潮覆盖面积峰值分别为3 110 km2和4 075 km2,自此绿潮灾害成为新的海洋环境事件;2010-2012年绿潮暴发规模异常低值,各年覆盖面积峰值均未超过1 800 km2,但从2013年开始绿潮规模逐渐攀升,到2015年绿潮覆盖面积峰值达5 629 km2,持续可达98 d,覆盖面积和持续时间为历年之最。绿潮漂移路径可归纳分为3类:2008年和2011年绿潮主体先北向漂移越过34°30'N后,西北向垂直于岸线漂移,主要对连云港、日照和青岛造成较大影响;2009年和2012年绿潮主体先北向漂移越过35°N后,东北向平行于岸线漂移,故只有少许绿潮上岸;2010年、2013-2015年绿潮主体北向漂移至近岸后东北向沿岸漂移,对日照、青岛和荣成沿海造成大面积影响。所有年份绿潮影响范围均限于南黄海内,东侧边界最远未越过124.2°E。  相似文献   

3.
Sukhanova  I. N.  Flint  M. V. 《Oceanology》2022,62(4):510-516
Oceanology - The material was obtained on July 18–24, 2016 in the area comprising the Ob River estuary and the adjacent shelf of the Kara Sea (71°28.3′–74°38.8′...  相似文献   

4.
《Marine Chemistry》2001,73(1):21-36
As part of the ANTARES 3/F-JGOFS cruise, the distributions of dissolved iron and manganese were measured in October 1995 in the north–east wake of the Kerguelen archipelago (48°40′–49°40′S, 68°70′–70°50′E), an area that shows high phytoplankton biomass (CZCS and SeaWiFS data) in the middle of the High Nutrient Low Chlorophyll (HNLC) Southern Ocean. The study area (about 25,000 km2) comprised a branch of the Polar Front with Antarctic surface water (AASW) intruding northward, shouldering the shelf break of the Kerguelen Plateau. The coastal zone was clearly affected by material of lithogenic origin (riverine discharges, soil leaching by rain waters, aeolian inputs), as well as by inputs from the sediments (effluxes from the sediment–water interface, resuspension from the sediments), its near surface waters showing considerable enrichment in dissolved iron (5.3–12.6 nM) and in dissolved manganese (2.9–8.6 nM). The offshore waters, although less enriched in trace-metals, were also affected by trace-metal inputs from coastal and continental shelf origin. Dissolved iron and manganese concentrations in these waters were 0.46–0.71 and 0.68–1.3 nM, i.e. far over typical antarctic open ocean surface water concentrations of 0.16 nM for iron [Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990. Iron in Antarctic waters. Nature, 345: 156–158.] and around 0.1 nM for manganese [Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990. Iron in Antarctic waters. Nature, 345: 156–158; Sedwick, P.N., Edwards, P.R., Mackey, D.J., Griffiths, F.B., Parslow, J.S., 1997. Iron and manganese in surface waters of the Australian subantarctic region. Deep-Sea Res., 44: 1239–1253.]. The dissolved iron enrichment in coastal waters of the Kerguelen Islands is much more important (about 10 times for dissolved iron) than for the Galapagos Islands, another oasis in the HNLC Equatorial oceanic system, where the concentration increase in dissolved iron in the surface waters around the islands is mostly driven by upwelling of the Equatorial Under Current (EUC) as it reaches the Galapagos Platform.  相似文献   

5.
《Oceanologica Acta》1998,21(2):345-351
A recapitulation of the records of tropical fishes from European Atlantic waters shows that 67.6% were fishes caught from the upper slope, between approximately 200 and 600 m; 19.8% were fishes caught from the continental shelf; and 13.5% were specimens caught from the middle slope, between 700 and 1 300 m. Since 1963, the upper slope species have made regular northward range extensions off of south Portugal to north-western Ireland (about 55° 30′N), more and less rapidly, about 30 years for Cyttopsis roseus and only 6 years for Sphoeroides pachygaster. The continental shelf species, observed from 1969 but mostly from 1981, have a northward range to south-eastern Ireland (about 52° N), but 65.2% of them have been caught off the south of the Bay of Biscay. The middle slope species, recorded only from 1991 according to the development of the deep fishery, were caught between 48° N and 60° N. The northward range extension of upper slope species and the higher frequency of records of continental shelf species from the southern part of the Bay of Biscay coincide with the investigations on the warming of the south-north current in the upper slope of northern Spain and of the south French Atlantic continental shelf.  相似文献   

6.
Heat fluxes are estimated across transatlantic sections made at 4°30′S and 7°30′N in January–March 1993, following Hall and Bryden (1982. Deep-Sea Research 29, 339–359). Particular care is given to the computation of Ekman volume and heat fluxes, which are assessed both (a) from the windstress data for the period of the cruise and (b) from the comparison between geostrophic and Vessel Mounted Acoustic Doppler Current Profiler (VM-ADCP) velocities. In contrast with previous studies, the two estimates for Ekman fluxes do not converge for either section: (a) (11.5±0.5 Sv; 1.01±0.05 PW) across 7°30′N and (−9.3±1.2 Sv; −0.85±0.12 PW) across 4°30′S when windstress data at the date of the hydrographic stations are used; (b) (6.3±1.1 Sv; 0.56±0.09 PW) across 7°30′N and (−3.4±3.0 Sv; −0.35±0.24 PW) across 4°30′N when the ageostrophic transport above the thermocline is used. The divergence would have been even greater at 4°30′S if the strong ageostrophic signal beneath the thermocline, which brings a transport of (8.4 Sv; 0.82 PW), had been considered. The corresponding total meridional heat fluxes are: (a) 1.40±0.16 PW and (b) 0.95±0.20 PW across 7°30′N, (a) 1.05±0.12 PW and (b) 1.67±0.14 PW (2.39±0.14 PW when the subthermocline ageostrophic transport is taken into account) across 4°30′S.The estimates based on windstress data are compared with the results from an inverse model (Lux and Mercier, 1999) to show the importance of the heat flux due to the deviation of the local depth-averaged potential temperature from its average over the section, which is neglected in the Hall and Bryden (1982. Deep-Sea Research 29, 339–359) method but is not negligible in our computation in which we do not isolate the transport of the western boundary current east of the 200 m isobath; this corrective flux amounts here to −0.19 PW across 7°30′N and 0.33 PW across 4°30′S.The seasonal variability of the meridional heat flux across 7°30′N is studied through the hydrographic data collected during the ETAMBOT 1–2 cruises, which repeated the 7°30′N section west of 35°W in September 1995 and April 1996. When the section is completed east of 35°W with CITHER 1 data and when windstress data are used for the computation of the Ekman transport, the estimates for the meridional heat fluxes are 0.20±0.14 PW in September 1995 and 1.69±0.27 PW in April 1996. The estimates fit well with results from numerical models.  相似文献   

7.
Direct velocity measurements undertaken using a nine-system mooring array (M1–M9) from 2004 to 2005 and two additional moorings (M7p and M8p) from 2003 to 2004 reveal the spatial and temporal properties of the deep-circulation currents southwest of the Shatsky Rise in the western North Pacific. The western branch of the deep-circulation current flowing northwestward (270–10° T) is detected almost exclusively at M2 (26°15′N), northeast of the Ogasawara Plateau. It has a width less than the 190 km distance between M1 (25°42′N) and M3 (26°48′N). The mean current speed near the bottom at M2 is 3.6±1.3 cm s?1. The eastern branch of the deep-circulation current is located at the southwestern slope of the Shatsky Rise, flowing northwestward mainly at M8 (30°48′N) on the lower part of the slope of the Shatsky Rise with a mean near-bottom speed of 5.3±1.4 cm s?1. The eastern branch often expands to M7 (30°19′N) at the foot of the rise with a mean near-bottom speed of 2.8±0.7 cm s?1 and to M9 (31°13′N) on the middle of the slope of the rise with a speed of 2.5±0.7 cm s?1 (nearly 4000 m depth); it infrequently expands furthermore to M6 (29°33′N). The width of the eastern branch is 201±70 km on average, exceeding that of the western branch. Temporal variations of the volume transports of the western and eastern branches consist of dominant variations with periods of 3 months and 1 month, varying between almost zero and significant amount; the 3-month-period variations are significantly coherent to each other with a phase lag of about 1 month for the western branch. The almost zero volume transport occurs at intervals of 2–4 months. In the eastern branch, volume transport increases with not only cross-sectional average current velocity but also current width. Because the current meters were too widely spaced to enable accurate estimates of volume transport, mean volume transport is overestimated by a factor of nearly two, yielding values of 4.1±1.2 and 9.8±1.8 Sv (1 Sv=106 m3 s?1) for the western and eastern branches, respectively. In addition, a northwestward current near the bottom at M4 (27°55′N) shows a marked variation in speed between 0 and 20 cm s?1 with a period of 45 days. This current may be part of a clockwise eddy around a seamount located immediately east of M4.  相似文献   

8.
We conducted a research cruise in late summer (July–August) 2000 to study the effect of mesoscale circulation features on zooplankton distributions in the coastal upwelling ecosystem of the northern California Current. Our study area was in a region of complex coastline and bottom topography between Newport, Oregon (44.7°N), and Crescent City, California (41.9°N). Winds were generally strong and equatorward for >6 weeks prior to the cruise, resulting in the upwelling of cold, nutrient-rich water along the coast and an alongshore upwelling jet. In the northern part of the study area, the jet followed the bottom topography, creating a broad, retentive area nearshore over a submarine shelf bank (Heceta Bank, 44–44.4°N). In the south, a meander of the jet extended seaward off of Cape Blanco (42.8°N), resulting in the displacement of coastal water and the associated coastal taxa to >100 km off the continental shelf. Zooplankton biomass was high both over the submarine bank and offshore in the meander of the upwelling jet. We used velocities and standing stocks of plankton in the upper 100 m to estimate that 1×106 m3 of water, containing an average zooplankton biomass of ~20 mg carbon m?3, was transported seaward across the 2000-m isobath in the meandering jet each second. That flux equated to offshore transport of >900 metric tons of carbon each day, and 4–5×104 tons over the 6–8 week lifetime of the circulation feature. Thus, mesoscale circulation can create disparate regions in which zooplankton populations are retained over the shelf and biomass can accumulate or, alternatively, in which high biomass is advected offshore to the oligotrophic deep sea.  相似文献   

9.
东海海樽类数量分布及与环境的关系   总被引:1,自引:0,他引:1  
提要根据1997—2000年东海23°30′—33°00′N、118°30′—128°00′E海域4个季节海洋调查资料,采用方差贡献和逐步回归分析方法探讨东海海樽类的数量变化和相应的动力学。结果表明,海樽类是东海浮游动物第二大类群,在数量上仅次于桡足类,其丰度春季最高,夏季次之,冬季最低;冬、春和夏季的东方双尾纽鳃樽(Thalia orientalis)和冬、秋季的小齿海樽(Doliolum denticulatum)是影响海樽类数量分布的主要优势种;海樽类高丰度区常位于暖流与各水团交汇处的偏暖流一侧,其数量变化的动力主要来自暖流势力的消长。海樽类在东海出现率较低,集群性强,较高丰度的分布仅局限在暖流势力范围内,其高丰度水域是东海暖流锋面的一个重要标志。  相似文献   

10.
We conducted a segment-scale hydrothermal plume survey of the Broken Spur segment, 29°00-20′N, Mid-Atlantic Ridge (MAR). The purpose of the study was to identify the distribution of sources of venting throughout the segment as part of a larger study of hydrothermal fluxes. Evidence from plume particle concentrations (as deduced from in situ nephelometer data) and total dissolvable Mn (TDMn) analyses (from discrete water samples) indicated a restricted source of venting close to the segment centre, coincident with the previously known vent-site. No other pronounced plume signals were observed outside an area bounded by 29°07.5–12.5′N and 43°10–12′W, representing less than 10% of the >300 km2 of deep water (>2600 m) within the segment. In addition, however, low-level (<2 nmol l-1) deepwater TDMn concentrations reveal a pervasive enrichment throughout the segment of ⩾0.15 nmol l-1. For the 4×1011 m3 of deepwater within the Broken Spur segment, this corresponds to a standing crop of 6×104 mol of hydrothermal Mn. Future studies of long-term current flow will allow the flux of dissolved Mn out of the segment to be established and will investigate the partitioning of its source, between high temperature and axial diffuse flow.  相似文献   

11.
We analyze spatial variations in the air turbidity factor T obtained from the interpolation of ground-based solar radiometry data within the territory (40°–70° N, 30°–60° E) in summer 2010. The abnormal heat and connected fires of summer 2010 changed the mean values of air turbidity and the character of its spatial variations. As a result, a “tongue” of increased values of the turbidity factor was observed in the south-to-north direction in July, and a closed region of anomalous high T was formed over the territory (48°–55° N, 37°–42° E) to the south of Moscow and partly covered the Moscow region in August. Such a pattern resulted from blockage preventing from ingress of air masses from the west and producing closed air circulation over the European Part of Russia (EPR).  相似文献   

12.
We conducted full-depth hydrographic observations between 8°50′ and 44°30′N at 165°W in 2003 and analyzed the data together with those from the World Ocean Circulation Experiment and the World Ocean Database, clarifying the water characteristics and deep circulation in the Central and Northeast Pacific Basins. The deep-water characteristics at depths greater than approximately 2000 dbar at 165°W differ among three regions demarcated by the Hawaiian Ridge at around 24°N and the Mendocino Fracture Zone at 37°N: the southern region (10–24°N), central region (24–37°N), and northern region (north of 37°N). Deep water at temperatures below 1.15 °C and depths greater than 4000 dbar is highly stratified in the southern region, weakly stratified in the central region, and largely uniform in the northern region. Among the three regions, near-bottom water immediately east of Clarion Passage in the southern region is coldest (θ<0.90 °C), most saline (S>34.70), highest in dissolved oxygen (O2>4.2 ml l?1), and lowest in silica (Si<135 μmol kg?1). These characteristics of the deep water reflect transport of Lower Circumpolar Deep Water (LCDW) due to a branch current south of the Wake–Necker Ridge that is separated from the eastern branch current of the deep circulation immediately north of 10°N in the Central Pacific Basin. The branch current south of the Wake–Necker Ridge carries LCDW of θ<1.05 °C with a volume transport of 3.7 Sv (1 Sv=106 m3 s?1) into the Northeast Pacific Basin through Horizon and Clarion Passages, mainly through the latter (~3.1 Sv). A small amount of the LCDW flows northward at the western boundary of the Northeast Pacific Basin, joins the branch of deep circulation from the Main Gap of the Emperor Seamounts Chain, and forms an eastward current along the Mendocino Fracture Zone with volume transport of nearly 1 Sv. If this volume transport is typical, a major portion of the LCDW (~3 Sv) carried by the branch current south of the Wake–Necker and Hawaiian Ridges may spread in the southern part of the Northeast Pacific Basin. In the northern region at 165°W, silica maxima are found near the bottom and at 2200 dbar; the minimum between the double maxima occurs at a depth of approximately 4000 dbar (θ~1.15 °C). The geostrophic current north of 39°N in the upper deep layer between 1.15 and 2.2 °C, with reference to the 1.15 °C isotherm, has a westward volume transport of 1.6 Sv at 39–44°30′N, carrying silica-rich North Pacific Deep Water from the northeastern region of the Northeast Pacific Basin to the Northwest Pacific Basin.  相似文献   

13.
Global warming has caused Arctic sea ice to rapidly retreat,which is affecting phytoplankton,the primary producers at the base of the food chain,as well as the entire ecosystem.However,few studies with large spatial scales related to the Arctic Basin at high latitude have been conducted.This study aimed to investigate the relationship between changes in phytoplankton community structure and ice conditions.Fifty surface and 41 vertically stratified water samples from the western Arctic Ocean(67.0°–88°26′N,152°–178°54′W) were collected by the Chinese icebreaker R/V Xuelong from July 20 to August 30,2010 during China's fourth Arctic expedition.Using these samples,the species composition,spatial distribution,and regional disparities of phytoplankton during different stages of ice melt were assessed.A total of 157 phytoplankton taxa(5 μm) belonging to 69 genera were identified in the study area.The most abundant species were Navicula pelagica and Thalassiosira nordenskioeldii,accounting for 31.23% and 14.12% of the total phytoplankton abundance,respectively.The average abundance during the departure trip and the return trip were 797.07×10~2 cells/L and 84.94×10~2 cells/L,respectively.The highest abundance was observed at Sta.R09 in the north of Herald Shoal,where Navicula pelagica was the dominant species accounting for 59.42% of the abundance.The vertical distribution of phytoplankton abundance displayed regional differences,and the maximum abundances were confined to the lower layers of the euphotic zone near the layers of the halocline,thermocline,and nutricline.The species abundance of phytoplankton decreased from the low-latitude shelf to the high-latitude basin on both the departure and return trips.The phytoplankton community structure in the shallow continental shelf changed markedly during different stages of ice melt,and there was shift in dominant species from centric to pennate diatoms.Results of canonical correspondence analysis(CCA) showed that there were two distinct communities of phytoplankton in the western Arctic Ocean,and water temperature,ice coverage and silicate concentration were the most important environmental factors affecting phytoplankton distribution in the surveyed sea.These findings will help predict the responses of phytoplankton to the rapid melting of Arctic sea ice.  相似文献   

14.
Macrofaunal polychaete communities (>500 µm) in the South Eastern Arabian Sea (SEAS) continental margin (200–1000 m) are described, based on three systematic surveys carried out in 9 transects (at ~200 m, 500 m and 1000 m) between 7°00′and 14°30′N latitudes. A total of 7938 polychaetes belonging to 195 species were obtained in 136 grab samples collected at 27 sites. Three distinct assemblages were identified in the northern part of the SEAS margin (10–14°30′N), occupying the three sampled depth strata (shelf edge, upper and mid-slope) and two assemblages (shelf edge and slope) in the south (7–10°N). Highest density of polychaetes and dominance of a few species were observed in the shelf edge, where the Arabian Sea oxygen minimum zone (OMZ) impinged on the seafloor, particularly in the northern transects. The resident fauna in this region (Cossura coasta, Paraonis gracilis, Prionospio spp. and Tharyx spp.) were characteristically of smaller size, and well suited to thrive in the sandy sediments in OMZ settings. Densities were lowest along the most northerly transect (T9), where dissolved oxygen (DO) concentrations were extremely low (<0.15 ml l−1, i.e.<6.7 μmol l−1). Beyond the realm of influence of the OMZ (i.e. mid-slope, ~1000 m), the faunal density decreased while species diversity increased. The relative proportion of silt increased with depth, and the dominance of the aforementioned species decreased, giving way to forms such as Paraprionospio pinnata, Notomastus sp., Eunoe sp. and lumbrinerids. Relatively high species richness and diversity were observed in the sandy sediments of the southern sector (7–9°N), where influence of the OMZ was less intense. The area was also characterized by certain species (e.g. Aionidella cirrobranchiata, Isolda pulchella) that were nearly absent in the northern region. The gradients in DO concentration across the core and lower boundary of the OMZ, along with bathymetric and latitudinal variation in sediment texture, were responsible for differences in polychaete size and community structure on the SEAS margin. Spatial and temporal variations were observed in organic matter (OM) content of the sediment, but these were not reflected in the density, diversity or distribution pattern of the polychaetes.  相似文献   

15.
Variability of Northeastward Current Southeast of Northern Ryukyu Islands   总被引:8,自引:4,他引:8  
To better understand the mechanism underlying the variation of the Kuroshio south of central Japan, we have examined the variability of current structure in its upstream region, southeast of Amami-Ohshima Island in the northern Ryukyu Islands. By combined use of ship-mounted Acoustic Doppler Current Profiler (ADCP) and the TOPEX/POSEIDON satellite altimeter data on Path 214, the sea surface absolute geostrophic currents were estimated every ten days from January 1998 to July 2002. The 4.5-year mean surface current was found to flow northeastward north of 26.8°N with a maximum speed of 14 cm s−1 over the shelf slope at 3000 m depth. The moored current-meter observations at three or four mooring stations from Dec. 1998 to Oct. 2002 suggested the existence of a northeastward undercurrent with a maximum core velocity of 23 cm s−1 at 600 m depth over the shelf slope at 1600 m depth. The mean volume transport in the top 1500 m between 27.9°N and 26.7°N is estimated to be 16 × 106 m3s−1 northeastward, including the subsurface core current related component of 4 × 106 m3s−1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
In spring and fall 2005, cross- and along-shelf transects were sampled to evaluate the influence of physical forcing, including sea ice, tides, and winds, on the lower trophic levels of the Bering Sea ecosystem. The hydrography, nutrients, chlorophyll, and zooplankton abundance and species composition were all affected by the presence or absence of sea ice on a north–south transect along the 70-m isobath. In May, shelf waters between ~59°N and 62°N were cold and relatively fresh, and benthic invertebrate larvae and chaetognaths were a significant fraction of the zooplankton community, while to the south the water was warmer, saltier, and the zooplankton community was dominated by copepods. The position of the transition between ice-affected and ice-free portions of the shelf was consistent among temperature, salinity, nutrients, and oxygen. This transition in the hydrographic variables persisted through the summer, but it shifted ~150 km northward as the season progressed. While a transition also occurred in zooplankton species composition, it was farther north than the physical/chemical transition and did not persist through the summer. Mooring data demonstrated that the change in the position of the transition in physical and chemical properties was due to northward or eastward advection of water onto and across the shelf. From south to north along the 70-m isobath, tidal energy decreased, resulting in a less sharply stratified water column on the northern portion of the middle shelf, as opposed to a well-defined, two-layered system in the southern portion. This more gradual stratification in the north permitted a greater response to mixing from winds, which were homogeneous from north to south. Thus the physical and biological structure at any one location over the middle shelf is dynamic over the course of a year, and results from a combination of in situ processes and climate-mediated regional forcing which is dominated in most years by sea ice.  相似文献   

17.
This publication considers the probing data on aquatic anomalies (hydrothermal plumes) in the areas of 26° and 29° N of the Mid-Atlantic Ridge (MAR). The mass of the hydrothermal iron supply and the intensity of the iron sedimentation onto the bottom were estimated by means of sediment traps. It was found that the plume of the TAG hydrothermal vent 6 km3 in volume contained about 67 t of suspended Fe; the plume of the Broken Spur field (up to 8.24 km3 in volume) contained 23.5 t or less because of the lower concentration. The data on the sedimentary matter fluxes showed that 0.3–0.5% of the hydrothermal iron was precipitated immediately from a plume of neutral buoyancy onto the bottom; the bulk of the iron was dissipated into the environment. From the dimensions of the plumes, the flow dynamics, the iron concentrations in the plumes, and the amounts of iron supplied by hydrothermal vents, it was found that the resident time of the plumes considered was from 5 to 10 days.  相似文献   

18.
The seasonal and interannual changes in surface nutrients, dissolved inorganic carbon (DIC) and total alkalinity (TA) were recorded in the North Pacific (30–54°N) from 1995 to 2001. This study focuses on the region north of the subarctic boundary (∼40°N) where there was extensive monthly coverage of surface properties. The nutrient cycles showed large interannual variations in the eastern and western subarctic gyres. In the Alaska Gyre the seasonal depletion of nitrate (ΔNO3) increased from 8–14 μmol kg−1 in 1995–1999 to 21.5 μmol kg−1 in 2000. In the western subarctic the shifts were similar in amplitude but more frequent. The large ΔNO3 levels were associated with high silicate depletions, indicating enhanced diatom production. The seasonal DIC:NO3 drawdown ratios were elevated in the eastern and central subarctic due to calcification. In the western subarctic and the central Bering Sea calcification was significant only during 1997 and/or 1998, two El Ni?o years. Regional C/N stoichiometric molar ratios of 5.7 to 7.0 (>40°N) were determined based on the years with negligible or no calcification. The annual new production (NPa) based on ΔNO3 and these C/N ratios showed large interannual variations. NPa was usually higher in the western than in the eastern subarctic. However, values of 84 gC m−2yr−1 were found in the Alaska Gyre in 2000 which is similar to that in the most productive provinces of the northern North Pacific. There were also large increases in NPa around the Alaska Peninsula in 1997 and 1998. Finally, the net removal of carbon by the biological pump was estimated as 0.72 Gt C yr−1 in the North Pacific (>30°N). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Jellyfish populations in the southeastern Atlantic off the coast of Namibia have increased subsequent to the decline of small pelagic fisheries at the end of the 1960s, although the environment there has also become warmer and the waters off Walvis Bay have become richer in zooplankton in recent years. Laboratory experiments were conducted with the scyphozoan jellyfish Chrysaora fulgida to investigate the effects of food density (0, 30, 70, 100 or 150 Artemia nauplii 200 ml?1), feeding frequency (once daily or once every third day) and water temperature (12, 16 or 20 °C) on the asexual reproduction, growth and development of polyps. The results of a generalised linear mixed-effects model reveal that all variables impacted asexual reproduction, with greater polyp production attained at higher food concentrations, increased feeding frequencies and increased temperatures. The most common mode of asexual reproduction was by lateral budding. These laboratory results suggest that polyps of C. fulgida may have proliferated off Namibia in recent times, which would contribute to increased numbers of jellyfish there.  相似文献   

20.
东中国海环流及其季节变化的数值模拟   总被引:1,自引:0,他引:1  
关于东中国海环流的研究,国内外学者已做了大量的工作。早期科学家们主要依赖于对温盐资料和少数测流资料的分析研究对渤、黄、东海的环流结构有了较系统和深入的认识。东中国海环流是由一个气旋式的“流涡”组成,东侧主要是北上的黑潮-对马暖流-黄海暖流及其延伸部分;西侧为南下的沿岸流系。黑潮对东中国海环流的影响是如此之大,以致于除了某些局部区域外,上述海域主要流系的冬、夏季分布形式比较相似而无本质上的差异(胡敦欣等,1993)。但本文所研究海域正处于世界上最显著的季风区,冬、夏季盛行风向基本相反,过渡季节(春、秋季)风向多变,风力减弱;海洋热盐结构季节变化明显(如冬季混合强,而夏季层化明显等),这些因素都使得东中国海环流存在着较明显的季节变化。 自20世纪80年代以来,东中国海环流的数值模拟工作逐步展开,并已成为研究环流结构及其形成机制的强有力工具。但由于数值模式本身以及计算方案的缺陷(如有些学者用固定的风场、温盐场对东中国海环流进行诊断模拟等)和观测资料的不足,数值模拟的结果难以得到验证,渤、黄、东海的环流研究中仍有大量的问题存在争议,以待澄清。例如,台湾暖流的来源、流径;对马暖流的来源;夏季黄海暖流的流径以及黄海冷水团环流等均有不同的论述。对黄、东海环流季节变化的数值模拟工作也较少,多用冬、夏典型月份的风场强迫积分至稳定态,给出冬、夏季环流,这种做法值得商榷。三维环流模式很难在1个月内达到稳定态,尤其是夏季层化明显、风力减弱的情况下,非常定风场的影响更应引起人们的重视。 本文采用比较符合实际的计算方案,用年循环风场和海面热通量场为外强迫,对渤、黄、东海的环流及其季节变化进行了模拟,并对一些争议问题进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号