首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cape hake in Namibian waters are demersal and mesopelagic spawners, spawning peaking offshore between 100 and 400 m deep, depending on local environmental conditions. The cross-shelf circulation, low-oxygen layers and mesoscale gyres are three important environmental factors influencing hake spawning behaviour and subsequent transport of the spawning products. Normally, hake spawn offshore near the bottom at depths of 150–400 m. However, during one cruise, spawning was concentrated below several subsurface mesoscale gyres, resulting in reduced dispersion of the eggs and larvae. When the low-oxygen layer above the bottom is pronounced, hake spawning has been observed close to the top of the layer at oxygen concentrations as low as 0.2–0.3 m? ??1. The relatively small size of the eggs and their high specific gravity make them ascend quite slowly from the spawning depths, 10–40 m per day. Consequently, hake eggs spawned deeper than 200 m hatch before they reach the upper mixed layer. The newly hatched larvae are relatively undeveloped, without functional eyes or mouth, and display little swimming activity during their first hours, but laboratory observations have revealed subsequent periods of downward swimming activity. Based on current field observations, on buoyancy measurements of eggs and larvae and on observed larval behaviour, it is concluded that hake eggs and larvae are transported onshore by features of the upwelling subsurface circulation that compensate for offshore movement of surface water. This may be the basic mechanism concentrating early juvenile hake nearshore. Spawning activity near the low-oxygen layer might be a behavioural adaptation to minimize egg predation, because few other species are expected to survive such low concentrations of oxygen.  相似文献   

2.
3.
Pelagic eggs of marine fish were collected weekly from shelf waters at Park Rynie on the KwaZulu-Natal south coast from 1987 to 2007 to investigate seasonal and annual patterns in the abundance of sardine Sardinops sagax eggs. After a sudden appearance in June each year, sardine eggs were found persistently throughout the winter–spring period before disappearing in early summer. From changes in the cross-shelf distribution of eggs, it is inferred that sardine shoals are close inshore in June, as they arrive in KwaZulu-Natal waters from the south, then the shoals disperse offshore and thereafter return inshore before their return migration southward in early summer. The period 2001–2007 yielded significantly fewer eggs than the previous 14 years of the study.  相似文献   

4.
In July 1998, a bottom-mounted Acoustic Doppler Current Profiler was deployed at 36m depth in the centre of the Tsitsikamma National Park on the eastern Agulhas Bank, South Africa. The purpose was to investigate transport of chokka squid Loligo vulgaris reynaudii paralarvae hatched on the inshore spawning grounds (<60m) and ichthyoplankton spawned within the park. Analysis of the first 12 months of data (July 1998–June 1999) shows that surface flow was mainly eastward (alongshore), with a maximum velocity (u-component) of +115cm s?1 and an average of +24cm s?1. Generally, velocity decreased with depth, with a maximum bottom velocity (u-component) of +65cm s?1 and an average of +10cm s?1. Data from a nearby thermistor array show that the water column was usually isothermal during winter (July–September), with bottom flow in the same direction as the surface layer. In summer (December–March), vertical stratification was most intense, and surface and bottom flows differed in velocity and direction. Potential net monthly displacements calculated for three depths (5m, 23m and 31m) indicate that passive, neutrally buoyant biological material (e.g. squid paralarvae, fish eggs and larvae) would likely be transported eastwards in the surface layer for eight of the 12 months, and would generally exceed distances of 220km month–1. Displacement in the bottom layer was more evenly distributed between east and west, with net monthly (potential) transport typically 70–100km, but reaching a maximum of 200km. Wind-driven coastal upwelling, prevalent during the summer, causes the surface layer of the coastal counter-current to flow offshore for several days, resulting in potential displacement distances of 40km from the coast. These results suggest that squid paralarvae hatched on the inshore spawning grounds are not generally transported towards the 'cold ridge', a prominent semi-permanent oceanographic feature of cold, nutrient-rich upwelled water, where food is abundant, and that fish larvae, whether from the surface or bottom layer, are exported beyond the boundaries of the Tsitsikamma National Park.  相似文献   

5.
The distribution patterns of saury eggs, larvae and early juveniles have been investigated over the continental shelf off the South-Western Cape from August 1977 to August 1978. Young saury tend to occupy water of 18°C or warmer in all seasons and are found offshore of the Benguela oceanic front when inshore upwelling is evident. Their distribution in the region appears to be linked to seasonal hydrography. Spawning in the study area occurs mainly between Cape Columbine and Cape Point, and to a lesser extent east of Cape Point. The ratio of large larvae and early juveniles to small larvae is greater off the West Coast than off the South Coast. Most spawning appears to take place in summer, with a peak abundance of larvae and early juveniles towards the end of this season. Instantaneous natural mortality was calculated: 5 – 30 mm, Z = 0,14·day?1; 30 – 100 mm, Z = 0,02·day?1. There is therefore a marked but unexplained decline in mortality shortly after the transition from the larval to the juvenile phase.  相似文献   

6.
Seasonal and short-term variability of environmental parameters influence the spawning strategies of fish species. In this study, the spawning strategies and the transport of early stages of the two Cape hake species off South Africa were investigated. Distribution of eggs and larvae of Merluccius paradoxus and M. capensis was analysed in order to derive more detailed and species-specific information on spawning season, spawning location, and transport of early stages. Samples were collected during three pilot surveys between January and October 2007 and during an extensive survey in September/October 2008 in the southern Benguela upwelling system off South Africa. Eggs and larvae of M. paradoxus were found in greater numbers than those of M. capensis during all surveys. Highest abundances were found from September to October, indicating one spawning peak for M. paradoxus during late austral winter to spring. The western Agulhas Bank was identified as the primary spawning ground, and smaller spawning events occurred on the West Coast. Larvae of both species were mainly distributed in subsurface waters between 25 and 100 m. More than 50% of all larvae caught had a total length between 3 and 4 mm and size increased significantly with decreasing latitude. Merluccius capensis were found closer inshore than M. paradoxus, indicating that early stages of the two species followed separate drift routes. We assume that this distribution pattern most likely evolved from differences in spawning location and phenology. The spawning strategies of M. paradoxus and M. capensis are well adapted to a time-frame of optimal transport conditions favourable for larval survival in the highly variable environment of the southern Benguela upwelling system, but the peak spawning of the two species is separated in time and space.  相似文献   

7.
There have been no previous studies of the composition of nearshore larval fish assemblages along the coast of Portugal. We aimed to describe the composition and horizontal distribution patterns of larval fish assemblages and their temporal dynamics near a rocky reef at depths shallower than 13 m (inshore) and at two miles (3.70 km) from shore (offshore), as well as along transects perpendicular to the shoreline, from the reef to 10 miles offshore (18.52 km). Samples were taken using 5 min sub-surface trawls at the rocky shore of the Arrábida Marine Park (W Portugal). A total of 1021 larvae were collected, belonging to 61 taxa inshore and to 29 taxa offshore. Along transects, 626 larvae of 52 taxa were collected. Most larvae belonged to coastal species associated with rocky reefs. Total larval abundance and diversity were higher from May to July, which is consistent with the spawning activity of adults. Diversity and total larval abundance decreased significantly with increasing distance from shore, both in the inshore/offshore comparison and in the transects, where this decrease was evident at a very small spatial scale (within the first mile from the reef). Species assemblages differed in the pattern of distribution, with most species clearly associated to the extreme nearshore. The distribution patterns obtained were independent of the spawning mode of species. Results are discussed in the light of the possible physical mechanisms that can potentially act at the Arrábida Marine Park to facilitate larvae retention and the role of larval behaviour.  相似文献   

8.
The study focuses on ichthyoplankton populations in the southern Angola Current, the Angola-Benguela Front and the coastal upwelling area of the northern and central Benguela Current. The horizontal and vertical distributions of eggs and larvae of sardine Sardinops sagax, anchovy Engraulis encrasicolus and horse mackerel Trachurus trachurus capensis were examined in relation to distribution patterns of temperature, salinity and dissolved oxygen. Samples were collected during February–March 2002 using a Bongo net and a multiple opening/closing net in five depth layers (0–30m, 30–60m, 60–100m, 100–140m and 140–220m). Eggs and larvae were restricted mainly to the shelf areas in the Angola-Benguela Font and southern Angola Current waters. Their vertical distributions in the Angola-Benguela Front and northern Benguela upwelling region showed a sharp decline in abundance at about 60m depth. This decline appeared to be correlated to the distribution of dissolved oxygen in the water column It is hypothesised that low oxygen concentrations have a strong impact on the development and survival of the early life-cycle stages of fish, and that recruitment of sardine and other pelagic species relies more on the upward extension of the oxygen minimum layer than was previously thought.  相似文献   

9.
A coupled physics particle-tracking model, driven by realistic meteorological forcing was used to examine the dispersal and transport of plaice eggs and larvae in the year 2000 from two spawning grounds in the Irish Sea. The model included passive transport of eggs and early stage larvae, diel vertical movements for larvae between 7 and 10.5 mm in body-length and tidally synchronised, vertical movements for larger larvae (>9 mm body-length). The year 2000 was chosen because of the availability of ichthyoplankton data with which to initialise the model. The majority of larvae originating from spawning in the eastern Irish Sea settled into nursery grounds along the Scottish, English and Welsh coasts, in agreement with previous findings. In contrast, a significant portion of larvae originating from spawning in the western Irish Sea was transported eastwards to these same nursery grounds. Transport across the Irish Sea resulted from the onset of tidally synchronised vertical behaviour encoded in the model for older larvae. Settlement of larvae into local nursery grounds along the Irish coast was limited. Because of the prevailing winds and currents in the region, plaice eggs and larvae are unlikely to be transported from east to west; in most years spawning in the western Irish Sea probably acts as an additional source of juveniles for nursery grounds along the Scottish, English and Welsh coasts.  相似文献   

10.
INTRODUCTIONNutrients (N ,PandSi)areessentialforphytoplanktongrowthinmarineecosystem .Thetransportandcycling ,distributionandvariationofnutrientsaffectnotonlyonthestructureandfunctionofecosystem ,butalsoonthevariationofthebiologicalresourcesinthesea .ThesouthofShondongPeninsulaisoneofthecentralzonesofurbanandagriculturalactivities.Al thoughthereisnodirectlargeriverinput,seasonalvariationofchemicalenvironmentisobviousintheHaizhouBay .Inspringandsummer,thedistributionsofnutrientsareinflu…  相似文献   

11.
We tracked the duration and intensity of the euphausiid spawning season through biweekly sampling along a transect off Newport, OR (latitude 44°40′N) over a six year period from 1996 to 2001. Our sampling consisted of vertical plankton tows, CTD casts, and collection of water for determination of chlorophyll a. Here, we report on data collected from two stations, 5 and 15 nautical miles (9.3 and 27.8 km) offshore. The density of euphausiid eggs in our samples was highly variable spatially and temporally; we saw the most striking differences in egg densities and length of the spawning season, when we compared spawning before and after 1999. This year corresponded to the time when the Pacific Decadal Oscillation switched from warm phase (pre-1999) to cool phase (1999–present). The years 1996 and 1997 were characterized by one large, late summer peak in egg density at our inshore station. 1998, an El Niño year, followed this pattern for our offshore station, but eggs were nearly absent at our inshore station. Starting in 1999, we saw multiple peaks in egg density and found that the spawning season extended from spring through early fall. For example, in spring (March–May) at the inshore station, the abundance of eggs increased from an average of 0.4 m−3 (1996–1998) to 51.3 m−3 (1999–2001), and for summer (July–September), 27.8 m−3 to 132.6 m−3 for the same time period. At the offshore station, egg abundances doubled over the same two time periods: 7 m−3 versus 11 m−3 (spring) and 55 m−3 versus 186 m−3 (summer). Peaks in egg densities were often associated with phytoplankton blooms, but not in a predictable way. Peaks in egg densities often followed cold-water upwelling events, especially at the inshore station. It is not yet clear whether this connection is due to changes in advection or changes in upwelling-induced productivity.  相似文献   

12.
The diverse pelagic fish assemblage of sub-tropical southern Queensland includes fishes with predominantly temperate distributions, such as tailor Pomatomus saltatrix, sardine Sardinops sagax, round herring Etrumeus teres, and Australian anchovy Engraulis australis. The peak spawning seasons of P. saltatrix, S. sagax and E. teres occur during late winter and early spring (June–October). Eggs and larvae of these three species are widely distributed in shelf waters and comprise >50% of the ichthyoplankton assemblage during this period. Mean monthly sea surface temperatures (SSTs) during late winter and early spring range from 21 to 23 °C, and are thus similar to those recorded in southern Australia during summer and autumn, which is the spawning season of these three species in those temperate waters. E. australis eggs occur mainly in inshore waters, and comprise >50% of fish eggs collected during summer and autumn when mean monthly SSTs in southern Queensland exceed 27 °C. E. australis also spawns mainly during summer and autumn in temperate Australia. Hence, water temperature may be less important as a determinant of the spawning season of E. australis than it is for the other three species. The suitability of southern Queensland for spawning by predominantly temperate species during late winter and early spring may contribute to the high diversity of the region's pelagic fish assemblage. Adult P. saltatrix, S. sagax and E. teres appear to migrate northwards into southern Queensland during early winter to spawn, and larvae may be transported southwards into temperate waters by the East Australian Current. This dispersal-migration pattern is similar to those observed for several species, including P. saltatrix, in the western boundary current systems off the east coasts of North America and Africa. Hence, pelagic fishes in ecosystems off the east coast of three continents migrate into sub-tropical waters to spawn, and larvae are transported back into temperate nursery areas by the prevailing current.  相似文献   

13.
《Journal of Sea Research》2007,57(2-3):198-208
Dover sole (Microstomus pacificus) and rex sole (Glyptocephalus zachirus) are both commercially valuable, long-lived pleuronectids that are distributed widely throughout the North Pacific. While their ecology and life cycle have been described for southern stocks, few investigations have focused on these species at higher latitudes. We synthesized historical research survey data among critical developmental stages to determine the distribution of life cycle stages for both species in the northern Gulf of Alaska (GOA). Bottom trawl survey data from 1953 to 2004 (25 519 trawls) were used to characterize adult distribution during the non-spawning and spawning seasons, ichthyoplankton data from 1972 to 2003 (10 776 tows) were used to determine the spatial and vertical distribution of eggs and larvae, and small-meshed shrimp trawl survey data from 1972 to 2004 (6536 trawls) were used to characterize areas utilized by immature stages. During the non-spawning season, adult Dover sole and rex sole were widely distributed from the inner shelf to outer slope. While both species concentrated on the continental slope to spawn, Dover sole spawning areas were more geographically specific than rex sole. Although spawned in deep water, eggs of both species were found in surface waters near spawning areas. Dover sole larvae did not appear to have an organized migration from offshore spawning grounds toward coastal nursery areas, and our data indicated facultative settling to their juvenile habitat in winter. Rex sole larvae progressively moved cross-shelf toward shore as they grew from April to September, and larvae presumably settled in coastal nursery areas in the autumn. In contrast with studies in the southern end of their range, we found no evidence in the GOA that Dover or rex sole have pelagic larval stages longer than nine months; however, more sampling for large larvae is needed in winter offshore of the continental shelf as well as sampling for newly settled larvae over the shelf to verify an abbreviated pelagic larval stage for both species at the northern end of their range.  相似文献   

14.
Transport between shelf and offshore environments supports a significant proportion of ocean primary productivity and is critical to the life cycle of many marine species. While fundamental differences in the underlying dynamics of eastern and western boundary currents have been recognized and studied for more than half a century, the implications for physical dispersal rates have received much less attention. In this study we explore how Australia’s two major boundary current systems, the East Australian Current and the Leeuwin Current, differ in their local retention and cross-shore transports in the upper water column and how these differences favor contrasting life histories of small pelagic fishes. The results suggest that the East Australian Current forms a partial barrier to onshore transport, but is effective in entraining shelf waters and transporting them offshore, particularly in the region where the current separates from the coast. Blue mackerel (Scomber australasicus) spawn on the outer-shelf in this separation region and may thereby maximize the dispersion of eggs and larvae in the mainly oligotrophic waters of the southern Coral Sea. In contrast, the Leeuwin Current system promotes onshore transport through the combined effects of mean onshore flow and eddy-induced mixing. In the Great Australian Bight, sardine (Sardinops sagax) and anchovy (Engraulis australis) may exploit the high coastal retention of the Leeuwin Current system by spawning on the inner-shelf during summer when the current is weakest and winds assist retention and enhance production through local upwelling.  相似文献   

15.
We have studied the relation between the hydrography, the composition and horizontal structure of the larval fish community, and the horizontal distribution patterns of larval fish abundances in an area characterised by strong mesoscale oceanographic activity, located between the Canary Islands and the African coast (the Canaries Coastal Transition Zone), during August 1999. Upwelling, upwelling filaments, cyclonic and anticyclonic eddies and island wakes are typical mesoscale features of the northwest African coast in summer. A single upwelling filament off Cabo Juby was joined in mid-August by a second that originated about 100 km to the north. The two filaments flowed together and merged 100 km offshore. The merged filament was partially entrained around a cyclonic eddy, trapped between the Canary Islands and the African coast, and interacted with cyclonic and anticyclonic eddies shed from Gran Canaria. Mesoscale oceanographic features strongly influenced the horizontal distributions of fish larvae. Eddies acted as a mechanism of concentration, while upwelling filaments were dispersive, transporting larvae from the African neritic zone into oceanic areas and towards the Canary archipelago. This transport was the major cause of the predominance of neritic larvae in the composition of the larval fish community of the area. The results also suggest: (1) that anchovy larvae are good indicators of the offshore displacement of upwelled water; (2) that the alternation between anchovy and sardine as species dominant in the larval fish community of the area during summer depends upon the water temperature in the African upwelling region, anchovy dominating at higher temperature; (3) that a coupling of anchovy and sardine spawning with the mesoscale oceanographic structure formed by the upwelling filaments and trapped eddy overcomes the negative effect that Ekman transport has on their populations.  相似文献   

16.
High-resolution acoustic and ichtyoplankton sampling with a ‘continuous under-way fish egg sampler (CUFES)’ was performed in two regions of approximately 100 square nautical miles off southern Iberian Peninsula, with the aim of studying the small scale distribution of sardine (Sardina pilchardus) adults and eggs during a spawning event. Very dense patches (246 eggs m− 3) of recently spawned eggs with dimensions (up to 3 nautical miles wide) significantly larger than daytime sardine schools were present in both regions. Egg staging and ageing showed very little intra-sample variation, indicating a synchronous spawning period at dusk. The internal structure of the patches evaluated by variography showed very low internal variability, as if they consisted of a single unit. This hypothesis is confirmed by the acoustic finding of large sardine shoals with similar dimensions to those of the patches after sunset and throughout the night. During that period, adults were found near or in contact with the bottom, suggesting that spawning occurred at depth. A distinct patch of older eggs was found in both areas, but with a few nautical miles of horizontal separation. Their characteristics (a larger area, lower egg densities and a more irregular shape) indicate that these patches were exposed to dispersion and ‘stirring’ by physical forces, reshaping their initial appearance, while mesoscale water circulation could have displaced the core of the patches away by several kilometres within a day.  相似文献   

17.
Temporal and spatial variations in the spawning activity ofSergia lucens were investigated in relation to some environmental conditions of Suruga Bay. The daily egg abundance varied considerably with the coefficient of variation from 81% to 269% in July. The spawning activity was most clearly affected by temperature, but the relationship to lunar period and content of chlorophylla were not obvious. Timing of the July spawning is predictable with increase of the surface temperature to 24°C and strong vertical movements of the 18°C isotherm depth; it is also related to modal length of the shrimp in June. It is suggested that intrusion of cold water at 20–50 m affects reproduction of the shrimps and vertical distribution of eggs and larvae. The shrimp population seemed to relate principally to two spawning grounds,i.e. the head part and the western part of the bay. The timing of spawning is not always synchronous throughout the bay. The spawning is sporadic and the distribution of eggs is patchy. This may reflect a recent decrease in the population of the shrimp due to increased fishing pressure.A part of the present paper is based on the thesis submitted by G. H. B. in partial fulfilment of the requirements for her degree of Master of Science at the Tokyo University of Fisheries in 1986.  相似文献   

18.
Fish eggs and larvae were studied in relation to an upwelling filament off Northwest Africa, near the Canary Islands, during August 1993. The filament was entrained around a quasi-permanent cyclonic eddy of diameter 100 km. The sampled ichthyoplanktonic community was dominated by neritic larvae, 94.2% of which were captured in the oceanic area. Horizontal distributions of neritic and oceanic larvae were strongly influenced by the oceanographic features characteristic of the coastal margin. Neritic larvae were associated with upwelling and filament structures, while oceanic larvae were strongly excluded from these features. The results suggest that coastal upwelling and filaments are mechanisms of transport for neritic ichthyoplankton into oceanic waters, that sardine larvae are good tracers of offshore movements of upwelled waters, and that the cyclonic eddy functions as a larval nursery ground for neritic fish species.  相似文献   

19.
We explored the hypothesis that spawning ground locations of North Sea plaice reflect the locations of nursery grounds using drift scenarios based on a baroclinic, shallow-water circulation model (HAMSOM). The transport of pelagic eggs and larvae was simulated each year from 1975 to 2006 using in situ forcing, temperature-dependent development and stage-specific behaviour of eggs and larvae. This long-term simulation period also allowed us to explore climate effects. A release position was considered a potential and suitable spawning site if larvae from that area reached coastal nurseries after the onset of metamorphosis. In general, larvae were transported in an anti-clockwise direction and settled in nurseries that were relatively close to the release positions. Spawning locations that were offshore were poorly connected to nursery grounds while those closer to the shore had higher connectivity. Simulated suitable spawning locations broadly agreed with the main centres of egg production (English Channel, Southern Bight, German Bight), except for the known spawning grounds south of Dogger Bank. Over the 31-year simulation period, positive and negative trends in transport success were found for the western and eastern parts of the North Sea, respectively. Changes in the west (Flamborough Head) were mainly due to changes in water circulation patterns whereas those in the east (northern German Bight) were induced by changes in both currents and water temperature. The implications of these findings, and the significant correlation between changes in drift and recruitment, suggest that climate-driven changes in the suitability of nursery grounds will directly affect the distribution and productivity of plaice in the North Sea.  相似文献   

20.
Fronts and eddies are widely hypothesized to be critical spawning habitat for large pelagic fishes, due to increased larval and/or adult feeding opportunities at these features. We examined sailfish (Istiophorus platypterus) spawning around a cyclonic, submesoscale (∼13 × 7 km) Florida Current frontal eddy. The temporal progression of eddy dynamics over a 65 h period was determined using ocean color satellite imagery, continuous surface measurements along the cruise track, and non-linear least-squares fitting of the positions of three drifters deployed within the eddy. A peak in larval sailfish densities (n = 2435, stations = 49), composed primarily of yolk-sac and first-feeding larvae, occurred at the eddy frontal zone. A majority of these larvae were estimated to have been spawned during the formation of the eddy. A comparison between the distribution of similar-age sailfish and scombrid larvae indicated that the peak in larval sailfish density likely resulted from spawning directly at the front, rather than transport by convergent flow. The first-feeding prey items of larval sailfish (Farranula and Corycaeus copepods) were most abundant at the frontal zone and to a lesser extent inside the eddy. Egg distributions were used to indirectly assess the distribution of adult sailfish prey items. Euthynnus alleteratus and Auxis spp. eggs were in highest abundance outside the eddy, while the eggs of small carangids were in highest abundance at the eddy frontal zone. Overall, this study indicates that sailfish spawn at small-scale oceanographic features that provide a favorable feeding environment for their larvae and potentially also for the adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号