首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Sampling was conducted along the quasi meridional transect at 130° E from the Lena River estuary to northern deep-sea regions of the Laptev Sea in September 2015. The latitudinal zonality and the impact of river runoff are manifested in the temperature and salinity distribution, concentration of particulate organic matter, and the structure of plankton communities. The differences in the chl a concentration and primary production along the transect are insignificant. The feeding rate of mesozooplankton herbivores was assessed by a fluorescence technique. The total consumption of phytoplankton biomass and primary production are estimated based on the feeding rate, abundance of zooplankton species, and their diel migrations. The daily grazing impact of zooplankton on phytoplankton biomass increases from 2% on the inner shelf to 3% on the mid-shelf, 5% on the outer shelf, and 10% in the deep-sea part of the basin. The consumption of primary production also increases: 1, 4.5, 5.7, and 13.9%, respectively. In the fall, the consumption of phytoplankton does not compensate the energy demands for respiration. The latitudinal zonality of the Laptev Sea appears not only in the hydrophysical water parameters and the structure of plankton communities, but also in their functional characteristics.  相似文献   

2.
Stage C5 copepodids and adult females of the herbivorous copepod Calanoides carinatus were sampled in the Angola-Benguela frontal region and northern Benguela upwelling area off Namibia in February–March 2002, using a multiple opening/closing net system. Respiration rates of C5s collected between 400m and 700m were measured onboard at the simulated in situ temperature of 8°C and at sea surface temperature (SST ≥20°C). These data were compared to the oxygen demand of epipelagic individuals of C. carinatus caught in the upper 30m and incubated at ambient SST. Deep-living C5s consumed 0.21 ± 0.08ml O2 h?1 (g dry mass)?1 at 8°C and 0.96ml O2 h?1 (g dry mass)?1 (range 0.84–1.09) at 25.9°C. These results were substantially lower than respiration rates of 5.23 ± 0.55ml O2 h?1 (g dry mass)?1 in epipelagic individuals incubated at SST. The results reveal a reduction by 96% of metabolic rate in deep-living, diapausing C5s relative to surface-dwelling, active individuals. Only 14.4% of this metabolic reduction is explained by the lower ambient temperature at depth and a Q10 value of 2.34. Therefore, the major fraction (81.6%) of the metabolic reduction is attributable to active physiological changes or processes during diapause at depth. The study emphasises the importance for herbivorous copepods, in areas with a highly variable food supply, to adopt a dormant phase in their life cycle in order to survive long periods of starvation.  相似文献   

3.
The biomass, elemental composition, and rates of ingestion and excretion by macrozoo‐plankon associated with the upwelling plume off the north‐west coast of the South Island, New Zealand, were investigated in March‐April 1983. Ingestion and excretion rates of the major zoo‐plankton species were combined with abundance data to determine the spatial and temporal variability which may influence phytoplankton dynamics in the plume system. Zooplankton biomass near Cape Kahurangi was dominated by small copepods like Acartia ensifera (up to 60%). In the South Tar‐anaki Bight, larval and adult forms of the euphau‐siid Nyctiphanes australis commonly contributed up to 60% of biomass. However, the carbon ingestion and ammonia excretion patterns of N. australis were spatially displaced from those of the total zooplankton community in the South Taranaki Bight because of higher weight‐specific metabolic rates for the smaller copepods. Close to the focus of the upwelling near the Kahurangi Shoals, grazing pressure on the phytoplankton was high, but as the upwelled water was advected into the Taranaki Bight, carbon production exceeded utilisation by zooplankton. Relatively high rates of ammonia excretion were also associated with peak zooplankton biomass near the Kahurangi Shoals and in the eastern Taranaki Bight.  相似文献   

4.
Rates of daily egg production, moulting and egg hatching success, as well as total lipid content and composition of Calanoides carinatus, were measured in the region of the southern Angola Curre nt SAC), the Angola-Benguela Front (ABF) and the coastal upwelling area of the northern Benguela Current (NBC) system during February–March 2002. There were distinct differences in the vertical distribution, growth characteristics, lipid content and composition of populations in the SAC/ABF and NBC regions, indicative of different physiological states. Whereas in the NBC, C. carinatus was actively growing in response to elevated chlorophyll a levels associated with coastal upwelling, it comprised deep-living C5 copepodids with very large wax ester reseves (c. 40–50% dry mass) and extremely low metabolism in the SAC/ABF, suggesting diapause. This study provides the first data on lipid composition (lipid classes, fatty acids and alcohols) of this copepod in the region; in particular, the diapausing C5 contained high-levels of long-chain, mono-unsaturated fatty acids (23% of all fatty acids) and alcohols (69% of all fatty alcohols) in addition to trophic markers of diatoms, viz. 16:1(n-7) and 20:5(n-3). Based on total lipidcontent, the maximum survival time of the diapausal component of C. carinatus was estimated to be 149–192 days, whereas active surface-dwelling C5s and females could not survive for more than 10 days without feeding.  相似文献   

5.
Spatial and temporal distribution patterns of zooplankton are highly variable in the Northern Benguela Upwelling System. We studied the distribution of zooplankton (size class ≥ 0.33 mm) and used field data from four cruises that took place between March 2008 and February 2011, as well as simulation results of a regional ecosystem model. Remotely sensed sea surface temperatures (SST) and surface chlorophyll concentrations were analysed to investigate environmental influences on zooplankton biomass. The Intense Benguela Upwelling Index showed a distinct seasonal signal throughout the years and the highest upwelling peaks in August/September. Even though surface chlorophyll concentrations were very variable throughout the year, the highest concentrations were always detected in September, following the upwelling of nutrient‐rich water. In field catches, zooplankton biomass concentration in the upper 200 m was highest above the outer shelf and shelf‐break in December 2010 and February 2011, i.e. 6 months after the upwelling peaks. In contrast, zooplankton biomass simulated by the model in the surface water was highest in September. In March/April, biomass maxima were typically measured in the field at intermediate water depths, but the vertical distribution was also affected by extensive oxygen minimum zones. The ecosystem model reproduced this vertical pattern. Although general trends were similar, simulation data of zooplankton standing stocks overestimated the field data by a factor of 3. In upwelling systems, food webs are generally considered to be short and dominated by large cells. However, our field data indicate more small‐sized zooplankton organisms above the shelf than offshore.  相似文献   

6.
The distribution of five dominant calanoid copepods was related to different water masses in the Angola-Benguela Front system. Five water bodies were identified by principal component analysis, on the basis of abiotic parameter such as temperature, salinity, dissolved oxygen, phosphate, silicate, nitrate and nitrite. These parameters were reduced to single factors and arranged along two principal component axes. The copepod species incuded females and copepodites C5 of Calanoides carinatus and females of Metridia lucens, Centropages brachiatus, Nannocalanus minor and Aetideopsis carinata. The water bodies identified in the frontal system were related to currents, upwelling processes, an oxygen minimum layer and biological modification. The different copepod species, as well as the two ontogenetic stages of C. carinatus, showed clear preference for specific water bodies, and their behavioural and physiological adaptations to the environment are discussed.  相似文献   

7.
Zooplankton research off Peru: A review   总被引:2,自引:1,他引:1  
A review of zooplankton studies conducted in Peruvian marine waters is given. After a short history of the development of zooplankton research off Peru, we review zooplankton methodology, taxonomy, biodiversity, spatial distribution, seasonal and interannual variability, trophodynamics, secondary production, and modelling. We review studies on several micro-, meso-, macro-, and meroplankton groups, and give a species list from both published and unpublished reports. Three regional zooplankton groups have been identified: (1) a continental shelf group dominated by Acartia tonsa and Centropages brachiatus; (2) a continental slope group characterized by siphonophores, bivalves, foraminifera and radiolaria; (3) and a species-rich oceanic group. The highest zooplankton abundances and biomasses were often found between 4–6°S and 14–16°S, where continental shelves are narrow. Species composition changes with distance from the shore. Species composition and biomass also vary strongly on short time scales due to advection, peaks of larval production, trophic interactions, and community succession. The relation of zooplankton to climatic variability (ENSO and multi-decadal) and fish stocks is discussed in the context of ecological regime shifts. An intermediate upwelling hypothesis is proposed, based on the negative effects of low upwelling intensity in summer or extremely strong and enduring winter upwelling on zooplankton abundance off Peru. According to this hypothesis, intermediate upwelling creates an optimal environmental window for zooplankton communities. Finally, we highlight important knowledge gaps that warrant attention in future.  相似文献   

8.
We conducted a research cruise in late summer (July–August) 2000 to study the effect of mesoscale circulation features on zooplankton distributions in the coastal upwelling ecosystem of the northern California Current. Our study area was in a region of complex coastline and bottom topography between Newport, Oregon (44.7°N), and Crescent City, California (41.9°N). Winds were generally strong and equatorward for >6 weeks prior to the cruise, resulting in the upwelling of cold, nutrient-rich water along the coast and an alongshore upwelling jet. In the northern part of the study area, the jet followed the bottom topography, creating a broad, retentive area nearshore over a submarine shelf bank (Heceta Bank, 44–44.4°N). In the south, a meander of the jet extended seaward off of Cape Blanco (42.8°N), resulting in the displacement of coastal water and the associated coastal taxa to >100 km off the continental shelf. Zooplankton biomass was high both over the submarine bank and offshore in the meander of the upwelling jet. We used velocities and standing stocks of plankton in the upper 100 m to estimate that 1×106 m3 of water, containing an average zooplankton biomass of ~20 mg carbon m?3, was transported seaward across the 2000-m isobath in the meandering jet each second. That flux equated to offshore transport of >900 metric tons of carbon each day, and 4–5×104 tons over the 6–8 week lifetime of the circulation feature. Thus, mesoscale circulation can create disparate regions in which zooplankton populations are retained over the shelf and biomass can accumulate or, alternatively, in which high biomass is advected offshore to the oligotrophic deep sea.  相似文献   

9.
Zooplankton biomass and distribution in the KwaZulu-Natal Bight were investigated in relation to environmental parameters during summer (January–February 2010) and winter (July–August 2010). Mean zooplankton biomass was significantly higher in winter (17.1 mg dry weight [DW] m–3) than in summer (9.5 mg DW m?3). In summer, total biomass was evenly distributed within the central bight, low off the Thukela River mouth and peaked near Durban. In winter, highest biomass was found offshore between Richards Bay and Cape St Lucia. Zooplankton biomass in each size class was significantly, negatively related to sea surface temperature and integrated nitrate, but positively related to surface chlorophyll a and dissolved oxygen. Zooplankton biomass was significantly related to bottom depth, with greatest total biomass located inshore (<50 m). Distribution across the shelf varied with zooplankton size. Seasonal differences in copepod size composition suggest that a smaller, younger community occupied the cool, chlorophyll-rich waters offshore from the St Lucia upwelling cell in winter, and a larger, older community occurred within the relatively warm and chlorophyll-poor central bight in summer. Nutrient enrichment from quasi-permanent upwelling off Durban and Richards Bay appears to have a greater influence on zooplankton biomass and distribution in the bight than the strongly seasonal nutrient input from the Thukela River.  相似文献   

10.
An investigation of surface phytoplankton communities was undertaken on the shelf of the northern Benguela upwelling ecosystem during austral autumn (May) and spring (September), along latitudinal transects at 20° S and 23° S, from 2 to 70 nautical miles offshore, as well as on a zigzag grid located between these transects. Microscopic identification of the phytoplankton and CHEMTAX analysis of pigment biomarkers were used to characterise the community composition. During May 2014, warmer, more-saline water with a shallower upper mixed layer corresponding to periods of less-intense offshore Ekman transport was encountered on the shelf. Satellite imagery indicated high phytoplankton biomass extending for a considerable distance from the coast, and CHEMTAX indicated diatoms as dominant at most of the stations (52–92%), although dinoflagellates were dominant at some inshore localities (57–74%). Species of Chaetoceros, Bacteriastrum and Cylindrotheca were the most abundant, with abundance of the Pseudo-nitzschiaseriata-group’ being particularly high at a number of stations. In September 2014, more-intense wind-forcing resulted in a deeper upper mixed layer and stronger upwelling of colder, less-saline water. Elevated phytoplankton biomass was confined close to the coast, where diatoms accounted for most of the population (54–87%), whereas small flagellates, such as prasinophytes, haptophytes and cryptophytes, as well as the cyanobacterium Synechococcus, dominated the communities (58–90%) farther from the coast. It is hypothesised that stronger upwelling and deeper vertical mixing in September of that year were not conducive for widespread diatom growth, and that small flagellates populated the water column by being entrained from offshore onto the shelf in the upwelled water that moved in towards the coast.  相似文献   

11.
DistributionofzooplanktonbiomassinthesoutheasternEastChinaSea¥WangChunsheng;HeDehua;LiuHongbin;YangGuanming;MiaoYutianandYuHo...  相似文献   

12.
The studied area is a shallow water area that belongs to the East China Sea continent shelf. The distribution of zooplankton biomass is higher inshore than offshore. The maximum abundance is in the inshore edge of the centre of upwelling, which is the superposed area of the salinity front and temperature front, due to the fact that the mixture of three different waters has brought about a concentration of nutrients. The herbivorous Euphausia, Copepoda and Tunicata are the major groups of the abundant area. Tunicata possess the possibility to compete against other kinds of herbivorous zooplankton. This means that there is negative correlation between the distribution of Tunicata and that of Copepoda and Euphausia. The positions of maximum areas of zooplankton biomass, phytoplankton individual and the concentration of phosphates and chlorophyll-a overlap one another. In the centre of upwelling, zooplankton can not adapt itself to the environment of lower temperature and less oxygen even with rich nutrient  相似文献   

13.
Vypeen, an island of Cochin estuarine system, acts as the spawning site of several marine and estuarine fishes. We assumed that, physical process(upwelling) make changes in hydrography and the production of chlorophyll a in coastal waters off Vypeen. These alterations can influence the zooplankton abundance and copepod community structure in that area. For justifying this hypothesis, samples were collected from Vypeen at 10 m and 30 m locations during January(pre-southwest monsoon), August(late-southwest monsoon) and November(postsouthwest monsoon) 2014. During August, subsurface water column was cool, nutrient rich and less oxygenated(signatures of upwelling) than in November and January. Maximum concentrations of nitrate and chlorophyll a were recorded during August. In the present study, 15 zooplankton groups were recorded; of which copepods were the most predominant group(73%–90%). Copepod density in the present study ranged between 527.2 ind./m~3 and 5 139.2 ind./m~3. Totally, 37 copepods species were reported in present study and copepod species richness was higher during January. The abundance of zooplankton and copepods was high in August during late-southwest monsoon. These variations were closely associated with the coastal upwelling in August and weakening of moderate upwelling in November. In SIMPER analysis, it was found that the copepods species distribution was similar within season and dissimilar between the three seasons. Moreover, the higher abundance of upwelling indicator species Temora turbinata was recorded in August, which confirms the signs of seasonal upwelling in Vypeen. The present study emphasized on the influence of hydrographical parameters associated with physical process, in governing the copepod community organization of the Vypeen Island.  相似文献   

14.
The species distribution and diversity of zooplankton and the effects of hydrodynamic factors of Zhejiang coastal waters during the active period of upwelling are discussed.High dominance (low diversity), high biomass and short food chain were found in the landward margins of the central region of the upwelling. There were evident interactions between the distribution of zooplankton and the environmental factors. The expression of these interactions is that different ecotypes of zooplankton adapt to different hydrological situations. There is significant positive correlation between the diversity indices of zooplankton and the mean water temperature in the survey area. It is noted that the vertical distribution of Calanus sinicus indicates to a certain extent the colder water environment of the upwelling (Fig. 7, Table 2, Reference (Hargreaves, 1981).  相似文献   

15.
Species composition and biomass of plankton samples taken on transects across an upwelling plume off Farewell Spit in February 1981 are presented. Copepods were numerically dominant, particularly Oithona similis and Paracalanus indicus. Also abundant were large phytoplankters (Chaetoceros sp. and Trichodesmium sp.), crustacean faecal pellets, and euphausiid larvae. The distribution of zooplankton species suggests mixing of inshore waters and neritic populations with upwelled waters. These data are discussed with respect to an interpretation of the upwelling system as a northwards transport of zooplankton and its enhanced productivity into the South Taranaki Bight.  相似文献   

16.
The southeastern Bering Sea shelf ecosystem is an important fishing ground for fin- and shellfish, and is the summer foraging grounds for many planktivorous seabirds and marine mammals. In 1997 and 1998, Northern Hemisphere climate anomalies affected the physical and biological environment of the southeastern Bering Sea shelf. The resulting anomalous conditions provided a valuable opportunity to examine how longer-term climate change might affect this productive ecosystem. We compared historical and recent zooplankton biomass and species composition data for the southeastern Bering Sea shelf to examine whether or not there was a response to the atmosphere–ocean–ice anomalies of 1997 and 1998. Summer zooplankton biomass (1954–1994) over the southeastern shelf did not exhibit a decline as previously reported for oceanic stations. In addition, zooplankton biomass in 1997 and 1998 was not appreciably different from other years in the time series. Spring concentrations of numerically abundant copepods (Acartia spp., Calanus marshallae, and Pseudocalanus spp.), however, were significantly higher during 1994–1998 than 1980–1981; spring concentrations of Metridia pacifica and Neocalanus spp. were not consistently different between the two time periods. Neocalanus spp. was the only taxon to have consistent differences in stage composition between the two time periods—CV copepodites were much more prevalent in May of the 1990s than early 1980s. Since relatively high zooplankton concentrations were observed prior to 1997, we do not attribute the high concentrations observed in the summers of 1997 and 1998 directly to the acute climate anomalies. With the present data it is not possible to distinguish between increased production (control from below) and decreased predation (control from above) to explain the recent increase in concentrations of the species examined.  相似文献   

17.
In spring and fall 2005, cross- and along-shelf transects were sampled to evaluate the influence of physical forcing, including sea ice, tides, and winds, on the lower trophic levels of the Bering Sea ecosystem. The hydrography, nutrients, chlorophyll, and zooplankton abundance and species composition were all affected by the presence or absence of sea ice on a north–south transect along the 70-m isobath. In May, shelf waters between ~59°N and 62°N were cold and relatively fresh, and benthic invertebrate larvae and chaetognaths were a significant fraction of the zooplankton community, while to the south the water was warmer, saltier, and the zooplankton community was dominated by copepods. The position of the transition between ice-affected and ice-free portions of the shelf was consistent among temperature, salinity, nutrients, and oxygen. This transition in the hydrographic variables persisted through the summer, but it shifted ~150 km northward as the season progressed. While a transition also occurred in zooplankton species composition, it was farther north than the physical/chemical transition and did not persist through the summer. Mooring data demonstrated that the change in the position of the transition in physical and chemical properties was due to northward or eastward advection of water onto and across the shelf. From south to north along the 70-m isobath, tidal energy decreased, resulting in a less sharply stratified water column on the northern portion of the middle shelf, as opposed to a well-defined, two-layered system in the southern portion. This more gradual stratification in the north permitted a greater response to mixing from winds, which were homogeneous from north to south. Thus the physical and biological structure at any one location over the middle shelf is dynamic over the course of a year, and results from a combination of in situ processes and climate-mediated regional forcing which is dominated in most years by sea ice.  相似文献   

18.
19.
A 3D eco-hydrodynamical model of high resolution (0.25° × 0.25°, 27 σ-levels) is used to simulate the seasonal variability of the ocean circulation and marine ecosystem in the Central-Eastern Basin of the North Atlantic including the Canary upwelling system. According to the model results, in the winter period, the “patches” of maximal phytoplankton and zooplankton biomass are often located in upwelling zones in the open ocean on the periphery of cyclonic eddies rather than in the coastal upwelling zones. In the summer period, when the phytoplankton biomass reaches maximal (in the annual cycle) values, the maxima of the phytoplankton are located in the coastal upwelling zones. As shown, there is no simple relationship between the nitrate distributions, on the one hand, and the phytoplankton and zooplankton ones, on the other hand.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号