首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Main features of the zooplankton distribution and the ecological characteristics of the dominant species in the northern Benguela during different phases of upwelling are discussed. The composition of the zooplankton between 17 and 27°S was similar each year. Among the 20°30 most abundant species, 3°4 copepods dominated, influencing the distribution of total zooplankton biomass. During quiescent upwelling, zooplankton abundance was low and there were no significant differences in the inshore-offshore distribution of zooplankton biomass, the maximum occurring over the slope. During active upwelling, zooplankton biomass increased significantly, the maximum over the shelf being constituted almost entirely of developmental stages of herbivorous copepods. Over the inner shelf, all stages of the copepod Calanoides carinatus were feeding actively, removing up to 5 per cent per day of the standing stock of phytoplankton. Comparison of daily ration, respiration rate and biochemical composition of C. carinatus revealed active storage of energy inshore. Offshore populations of C. carinatus, found deeper than 200 m, comprised mainly copepodite stage V, which were not feeding and were characterized by decreased mobility and respiration and a high lipid content. It is estimated that the energy stored during active upwelling enables copepods to survive up to six months without any additional source of energy.  相似文献   

2.
3.
An investigation of surface phytoplankton communities was undertaken on the shelf of the northern Benguela upwelling ecosystem during austral autumn (May) and spring (September), along latitudinal transects at 20° S and 23° S, from 2 to 70 nautical miles offshore, as well as on a zigzag grid located between these transects. Microscopic identification of the phytoplankton and CHEMTAX analysis of pigment biomarkers were used to characterise the community composition. During May 2014, warmer, more-saline water with a shallower upper mixed layer corresponding to periods of less-intense offshore Ekman transport was encountered on the shelf. Satellite imagery indicated high phytoplankton biomass extending for a considerable distance from the coast, and CHEMTAX indicated diatoms as dominant at most of the stations (52–92%), although dinoflagellates were dominant at some inshore localities (57–74%). Species of Chaetoceros, Bacteriastrum and Cylindrotheca were the most abundant, with abundance of the Pseudo-nitzschiaseriata-group’ being particularly high at a number of stations. In September 2014, more-intense wind-forcing resulted in a deeper upper mixed layer and stronger upwelling of colder, less-saline water. Elevated phytoplankton biomass was confined close to the coast, where diatoms accounted for most of the population (54–87%), whereas small flagellates, such as prasinophytes, haptophytes and cryptophytes, as well as the cyanobacterium Synechococcus, dominated the communities (58–90%) farther from the coast. It is hypothesised that stronger upwelling and deeper vertical mixing in September of that year were not conducive for widespread diatom growth, and that small flagellates populated the water column by being entrained from offshore onto the shelf in the upwelled water that moved in towards the coast.  相似文献   

4.
5.
We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are included. In the Benguela, such models were first applied to simulate the dispersal of anchovy Engraulis encrasicolus and sardine Sardinops sagax ichthyoplankton, and more recently of the early life stages of chokka-squid Loligo reynaudii and Cape hakes Merluccius spp. We identify how the models have helped advance understanding of key processes for these species. We then discuss which aspects of the early life of marine species in the Benguela Current ecosystem are still not well understood and could benefit from new modelling studies.  相似文献   

6.
Sandy beaches constitute nearly 46 per cent of the coastline between the Cape of Good Hope and the Orange River along the west coast of South Africa. In addition, shores of mixed sand and rock make up a further 24 per cent although these are not considered here. Sandy beaches are therefore the dominant shore type along the coastline, and most are subject to high wave energy. There are two main ecological beach types along the study coastline: those that receive a high input of organic matter in the form of stranded kelp and those that do not. Neither type appears to support large stocks of surf-zone phytoplankton, but despite this, even beaches receiving no stranded kelp bear high standing stocks of infauna. This fact may be related to the location of the beaches alongside a highly productive upwelling region. Existing ecological information on sandy beaches along the Benguela coastline is reviewed and integrated to form a composite picture of present understanding of these beaches. The definition of a sandy beach includes not only the sandy intertidal zone but also the surf zone and sand dunes associated with it. Sandy beaches are characterized by the absence of attached primary producers, although in some parts of the world primary production by surf-zone phytoplankton has been found to be important. Secondary production by the infauna usually depends on matter imported into the system, except on beaches supporting important stocks of surf-zone phytoplankton. Imported organic matter is retained by beach sediments which act as a physical sieve, filtering large quantities of water with each wave and tide.  相似文献   

7.
The three countries of the Benguela Current Large Marine Ecosystem (BCLME), namely Angola, Namibia and South Africa, have committed to implementing ecosystem-based management (EBM) including an ecosystem approach to fisheries (EAF) in the region, to put in practice the principles of sustainable development in ocean-related matters. There is also recognition of the need for marine spatial planning (MSP) as a process for informing EBM with regard to the allocation and siting of ocean uses so that ecosystem health is ensured and trade-offs between ecosystem services are appropriately dealt with. Marine spatial planning is both an integrated and an area-based process, and this paper produces a spatial characterisation of the BCLME for achieving a common basis for MSP in the region, focusing on the oceanography, biology and fisheries. Recognising spatial variation in physical driving forces, primary and secondary production, trophic structures and species richness, four different subsystems are characterised: (1) north of the Angola–Benguela Front, (2) from the Angola–Benguela Front to Lüderitz, (3) from Lüderitz to Cape Agulhas, and (4) from Cape Agulhas to Port Alfred on the south-east coast of South Africa. Research and monitoring requirements of relevance for MSP and EBM in the region are identified, focusing on understanding variability and change, including with regard to the boundary areas identified for the system. To this end, 14 cross-shelf monitoring transects are proposed (including seven that are already being monitored) to estimate fluxes of biota, energy and materials within and between the subsystems. The usefulness of models for understanding ecosystem variability and changes is recognised and the need for fine-scale resolution of both sampling and modelling for adequate MSP as input to EBM for the often-conflicting interests of conserving biodiversity, and managing fisheries, recreation, offshore oil and gas exploration and exploitation, offshore mining and shipping routes, is emphasised.  相似文献   

8.
Three fish species, anchovy, hake and lanternfish, occupy different habitats in the neritic zone of the Benguela Current ecosystem. Compatibility between the predicted environmental variability in each habitat and the collection of life history traits found in each species is examined with simulation models. Variability in early-stage survival is introduced into the models by means of both random and non-random ("red") spectra. Traits exhibited by lanternfish are shown to be inefficient in filtering out random variability and the species therefore cannot prevent collapse in a non-randomly variable environment. By comparison, the traits found in anchovy and hake filter out part of both random and non-random variability in survival and allow a fairly stable population size to be maintained. It is argued that, as life-history traits are adapted to the spectrum of variability associated with the habitat, only anomalies with respect to this spectrum are likely to have a large influence on stock size.  相似文献   

9.
Zooplankton dynamics (community composition, juvenile somatic growth rate, adult egg production, secondary production) were studied in coastal waters of the Great Barrier Reef. Two sectors were compared, one adjacent to a catchment of near-pristine land use patterns, the other to a more intensively farmed catchment. Sampling was conducted in the austral winter (August) and summer (January–March) of two succeeding years. Gradients in zooplankton community composition were weak, with only moderate effects of season and sector. Overall, 37% of zooplankton biomass was in the 73–150 μm size fraction, 26% in the 150–350 μm fraction, and 38% was >350 μm. There was no biomass difference and only small differences in community composition between samples taken during the day and at night; ostracods and large calanoid copepods were occasionally more common at night. Carbon-specific growth rates averaged 0.29 d−1 for cyclopoid copepods and 0.35 d−1 for calanoid copepods, with no difference between sectors. Calanoid copepod growth showed a significant relationship to chlorophyll concentration, but cyclopoid copepods did not. Copepod egg production was low (7.9 ± 5.9 eggs female−1 d−1) and apparently food-limited. Copepod secondary production was lower in August (mean = 2.6, range 1.4–4.0 mg C m−2 d−1) than in January–March (mean = 8.5, range 2.4–15.5 mg C m−2 d−1). Secondary production by mesozooplankton in the 73–100 μm size range averaged 0.9% of total phytoplankton production.  相似文献   

10.
The diet of sardine Sardinops sagax in the southern Benguela was investigated by microscopic examination of stomach contents. The relative dietary importance of prey size and prey type was assessed by calculating the carbon content of prey items. Sardine is an omnivorous clupeoid, ingesting both phytoplankton and zooplankton, with the relative importance of these two food types varying both spatially and temporally. Stomach contents were numerically dominated by small prey items, principally dinoflagellates, followed by crustacean eggs, cyclopoid copepods, calanoid copepods and diatoms. Virtually all prey items ingested by sardine were <1.2 mm maximum dimension, the particle size below which sardine only filter-feed. Despite the numerical dominance by phytoplankton, zooplankton contributed the major portion to sardine dietary carbon, small calanoid and cyclopoid copepods, anchovy eggs and crustacean eggs being the primary prey types. These results indicate that, like anchovy Engraulis capensis, sardine in the southern Benguela are primarily zoophagous, and contrast with earlier dietary studies on sardine in the region. However, the two species appear to partition their prey on the basis of size; sardine consume small zooplankton, whereas anchovy consume large zooplankton. This difference has been observed in other upwelling ecosystems where the two genera co-exist and is likely to contribute to the regime shifts observed between sardine and anchovy.  相似文献   

11.
12.
Pigment indices were used to investigate the distribution and composition of phytoplankton in the northern Benguela during the austral spring of 2000, with sampling being conducted on five transect lines between 19°S and 25°S and at other inshore stations on the shelf. Total chlorophyll a concentrations (TChla) at the surface ranged from 18.4mg m?3 at shallow inshore stations to 0.58mg m?3 at offshore localities in deeper water. Phytoplankton communities in the inshore environment were characterised by elevated biomass levels and the dominance of diatoms (high FucDP indices). These diatom populations were associated with cool, higher density, nutrient-rich waters near the coast. Phytoplankton biomass declined with increasing distance offshore and the communities changed to a mixed population where small flagellates were generally dominant (high FlagDP indices). These flagellate communities were associated with warmer, lower density waters. Whereas dinoflagellates (PerDP Index) and prokaryotes (ZeaDP Index) were observed throughout the region, their contribution to the communities was of secondary importance.  相似文献   

13.
14.
Attempts are made to consolidate current information on estimates of standing stock, production and consumption of meso- and macrozooplankton from the shelf region of the west and south coasts of southern Africa for inclusion in a network analysis of carbon flow in the Benguela system. The meso- and macrozooplankton communities consist chiefly of copepods and euphausiids respectively. Although geographic and seasonal differences in standing stock are reasonably well described for the inner shelf (<200 m), knowledge of production and rate processes affecting standing stock is limited, and extrapolation to the whole shelf area (<500 m) provides only a crude appraisal of the real situation. Despite the uncertainties, direct measurements have improved on estimates previously inferred. It seems likely that grazing by meso- and macrozooplankton plays a minor role in phytoplankton losses in the Benguela system. However, it would appear that predation by macrozooplankton, particularly under swarming conditions, has an appreciable impact on mesozooplankton biomass.  相似文献   

15.
The angelfish Brama brama is a mesopelagic species distributed circumglobally in temperate to warm-temperate waters, including continental-shelf-edge and upper-slope waters of the Benguela Current ecosystem. Little is known about the parasite assemblage of Benguela B. brama, with only three parasite taxa having previously been documented from this species in the southern Benguela. This study describes the macroparasites recorded from 35 B. brama collected during research surveys off the west coast of South Africa in 2015 and 2016. A total of six macroparasite taxa were documented, including the nematode Anisakis pegreffii, the copepod Hatschekia conifera, the cestode Hepatoxylon trichiuri, an acanthocephalan from the genus Rhadinorhynchus, a monogenean from the family Diclidophoridae, and an unidentified species. Three of these (He. trichiuri, Rhadinorhynchus sp. and the unidentified species) had not previously been found to infect B. brama. The most prevalent macroparasite taxa were A. pegreffii (94%), the unidentified species (71%) and Ha. conifera (60%). Two of the parasites, Ha. conifera and He. trichiuri, showed seasonal variation in infection, and infection with the latter was positively correlated with host length. These findings increase our knowledge of B. brama biology and contribute to our understanding of the biodiversity of the southern Benguela ecosystem.  相似文献   

16.
Birthdate distributions of anchovy recruits caught during research surveys in June 1985 and June 1989 were compiled from weighted length frequency distributions, aged samples and length frequencies from commercial catches. Birthdates ranged from July to March with a peak in October for both year-classes. However, birthdate distribution for the 1989 year-class showed comparatively few fish spawning after October 1988. Also, the growth rate of recruits was slower in 1989 than in 1985. It is proposed that the very weak 1989 year-class of anchovy and the low spawning biomass subsequently observed were a result of poorer-than-average egg production and survival of prerecruits spawned after October 1988, and the slow rate of growth of juvenile anchovy recruited till June 1989.  相似文献   

17.
Phytoplankton absorption and pigment characteristics of a red tide were investigated in coastal waters of the southern Benguela. Diagnostic indices indicated that dinoflagellates were the dominant phytoplankton group, with diatoms and small flagellates being of secondary importance. Very high biomass was observed close to the coast where chlorophyll a concentrations of up to 117 mg m–3 were measured. Both measured (a ph) and reconstructed pigment absorption (a pig) displayed an increasing trend with chlorophyll a, while the package effect index (Q* a) decreased, indicating increased packaging with an increase in biomass. Proportioning of the total pigment absorption between 400 and 700 nm revealed that chlorophyll a accounted for 39–65% of the absorption, while photosynthetic carotenoids (15–30%) and chlorophyll cs (15–30%) were also prominent in absorbing light for photosynthesis.  相似文献   

18.
Cape hake in Namibian waters are demersal and mesopelagic spawners, spawning peaking offshore between 100 and 400 m deep, depending on local environmental conditions. The cross-shelf circulation, low-oxygen layers and mesoscale gyres are three important environmental factors influencing hake spawning behaviour and subsequent transport of the spawning products. Normally, hake spawn offshore near the bottom at depths of 150–400 m. However, during one cruise, spawning was concentrated below several subsurface mesoscale gyres, resulting in reduced dispersion of the eggs and larvae. When the low-oxygen layer above the bottom is pronounced, hake spawning has been observed close to the top of the layer at oxygen concentrations as low as 0.2–0.3 m? ??1. The relatively small size of the eggs and their high specific gravity make them ascend quite slowly from the spawning depths, 10–40 m per day. Consequently, hake eggs spawned deeper than 200 m hatch before they reach the upper mixed layer. The newly hatched larvae are relatively undeveloped, without functional eyes or mouth, and display little swimming activity during their first hours, but laboratory observations have revealed subsequent periods of downward swimming activity. Based on current field observations, on buoyancy measurements of eggs and larvae and on observed larval behaviour, it is concluded that hake eggs and larvae are transported onshore by features of the upwelling subsurface circulation that compensate for offshore movement of surface water. This may be the basic mechanism concentrating early juvenile hake nearshore. Spawning activity near the low-oxygen layer might be a behavioural adaptation to minimize egg predation, because few other species are expected to survive such low concentrations of oxygen.  相似文献   

19.
It is indeed my great honor to receive the Okada Prize (1983) for my studies on the population dynamics and production of inshore marine copepods. This article summarizes the lecture I gave under the above title. It has long been postulated that there is some mechanism whereby a species can repopulate after its disappearance from the plankton, since the appearance of many temperature marine copepods clearly occurs on a seasonal basis. During the last decade, evidence of resting egg production has been found for more than 20 species belonging to Temoridae, Centropagidae, Pontellidae, Acartiidae and Tortanidae. In the Inland Sea of Japan, a summer-fall copepodTortanus forcipatus lays diapause (obligatory resting) eggs in the fall, which overwinter in the sediment on the sea floor until the following summer when water temperature reachesca. 15°C. On the other hand, in Onagawa Bay,Acartia clausi is perennial and produces only subitaneous eggs, many of which, however, sink to the bottom and undergo quiescence (facultative resting eggs) due to adverse environmental conditions (e.g. low temperature, deoxygenation, darkness). There are a large quantity (0.5–2.0×106 eggs m−2) ofA. clausi resting eggs in the sediments of Onagawa Bay, which may play an important role in maintaining a more constant planktonic population. The parameters of population dynamics,i.e. the rates of egg production, recruitment and mortality, have been analyzed forA. clausi in Onagawa Bay, by an integration of field and laboratory studies. Recruitment into the planktonic population older than NIII only accounts for 10–20% of egg production. This apparent loss of eggs, which coincides with the benthic resting phase, may be a characteristic feature of the population dynamics of this species. Stage-specific mortality is generally similar in most of the stages, although CI and CVI suffer more severe mortality, possibly as a result of great morphological change in the former stage and heavy predations in the latter. The seasonal change in daily production byA. clausi has also been investigated, its annual production being 2.45 gC m−2. Daily production and biomass (P:B) ratios increase linearly with temperature. Estimated values of production for other inshore marine copepods are reviewed in relation to P:B ratios and the ratio between secondary and primary production.  相似文献   

20.
Long-term ecosystem changes, such as regime shifts, have occurred in several marine ecosystems world-wide. Multivariate statistical methods have been used to detect such changes. A new method known as the sequential t-test algorithm for analysing regime shifts (STARS) is applied to a set of biological state variables as well as environmental and anthropogenic forcing variables in the southern Benguela. The method is able to correct for auto-correlation within time-series by a process known as prewhitening. All variables were tested with and without prewhitening. Shifts that were detected with both methods were termed robust. The STARS method detected shifts in relatively short time-series and identified when these shifts occurred without a priori hypotheses. Shifts were generally well detected at the end of time-series, but further development of the method is needed to enhance its performance for auto-correlated time-series. Since 1950, two major long-term ecosystem changes were identified for the southern Benguela. The first change occurred during the 1960s, caused predominantly by heavy fishing pressure but with some environmental forcing. The second change occurred in the early 2000s, caused mainly by environmental forcing. To strengthen these findings, further analyses should be carried out using different methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号