首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
In the upper Schelde estuary in 2002, phytoplankton biomass and community composition were studied using microscopic and pigment analyses. Chlorophyll a concentration was a good predictor of phytoplankton biomass estimated from cell counts and biovolume measurements. The phytoplankton carbon to chlorophyll a ratio, however, was often unrealistically low (<10). CHEMTAX was used to estimate the contribution of the major algal groups to total chlorophyll a. The dominant algal groups were diatoms and chlorophytes. While diatom equivalents in chlorophyll a predicted diatom biomass relatively well, chlorophyte equivalents in chlorophyll a were only weakly related to chlorophyte biomass. The pigment-based approach to study phytoplankton overestimated phytoplankton biomass in general and chlorophyte biomass in particular in late autumn and winter, when phytoplankton biomass was low. A possible explanation for this overestimation may be the presence of large amounts of vascular plant detritus in the upper Schelde estuary. Residual chlorophyll a, chlorophyll b and lutein in this detritus may result in an overestimation of total phytoplankton and chlorophyte biomass when the contribution of phytoplankton to total particulate organic matter is low.  相似文献   

2.
Concentrations of chlorophyll a and suspended particulate concentrations were measured during three lake-wide surveys of St Lucia, a shallow, turbid estuary on the east coast of South Africa. There was no salinity gradient in the system during any of the surveys, but between the surveys there were considerable salinity differences. Summer turbidities were higher than those of winter and spring, and turbidity along the eastern edge of the system was lower than elsewhere. Chlorophyll a was present over a wide range of salinities and turbidities and was generally highest in summer. However, there was no relationship between salinity and concentrations of chlorophyll a, and the concentrations were not significantly higher along the less turbid eastern shore. Concentrations of total paniculate matter (TPM) and particulate organic matter (POM) in the < 100 μm fraction were significantly correlated with turbidity throughout the year, but chlorophyll a and POM (< 100 μm) were significantly correlated only in summer. Concentrations of TPM in the > 100 μm fraction were two orders of magnitude lower than those in the < 100 μm fraction, but the organic content of the former fraction was very much higher. There was no relationship between turbidity and TPM (> 100 μm), nor between chlorophyll a and POM (> 100 μm) concentrations. Under conditions of high TPM load and in the salinity range 2–25 × 10?3, phytoplankton would probably still occur in St Lucia. Estimates of phytoplankton production ranged between 218 and 252 mg C·m?2·day?1. A comparison of estimates of the standing stocks of carbon from phytoplankton and suspended POM < 100 μm indicated that carbon input from sources other than phytoplankton may be important.  相似文献   

3.
The inter-annual variability in phytoplankton summer blooms in the upper reaches of the Schelde estuary was investigated between 1996 and 2005 by monthly sampling at 10 stations. The large inter-annual variations of the chlorophyll a concentration in the freshwater tidal reaches were independent from variations in chlorophyll a in the tributary river Schelde. Summer mean chlorophyll a concentrations were significantly negatively correlated with flushing rate (Spearman correlation: r = −0.67, p = 0.05, n = 9) but not with temperature, irradiance and suspended particulate matter or dissolved silica (DSi) concentrations. During dry summers, low flushing rates permitted the development of dense phytoplankton populations in the upper part of the estuary, while during wet summers high flushing rates prevented the development of dense phytoplankton blooms. Flushing rate was also found to be important for the phytoplankton community composition. At low flushing rates, the community was dominated by diatoms that developed within the upper estuary. At high flushing rates, chlorophytes imported from the tributary river Schelde became more important in the phytoplankton community. The position of the chlorophyll a maximum shifted from the head of the estuary when flushing rates were low, to more downstream when flushing rates were high. Although DSi concentrations tended to be lower during years of high phytoplankton (mainly diatom) biomass, the relation with flushing rate was not significant.  相似文献   

4.
Two sets of high-resolution subsurface hydrographic and underway surface chlorophyll a (Chl a) measurements are used, in conjunction with satellite remotely sensed data, to investigate the upper layer oceanography (mesoscale features and mixed layer depth variability) and phytoplankton biomass at the GoodHope line south of Africa, during the 2010–2011 austral summer. The link between physical parameters of the upper ocean, specifically frontal activity, to the spatially varying in situ and satellite measurements of Chl a concentrations is investigated. The observations provide evidence to show that the fronts act to both enhance phytoplankton biomass as well as to delimit regions of similar chlorophyll concentrations, although the front–chlorophyll relationships become obscure towards the end of the growing season due to bloom advection and ‘patchy’ Chl a behaviour. Satellite ocean colour measurements are compared to in situ chlorophyll measurements to assess the disparity between the two sampling techniques. The scientific value of the time-series of oceanographic observations collected at the GoodHope line between 2004 to present is being realised. Continued efforts in this programme are essential to better understand both the physical and biogeochemical dynamics of the upper ocean in the Atlantic sector of the Southern Ocean.  相似文献   

5.
Elevated levels of phytoplankton were observed at the Northern California coastal upwelling ecosystem studied as part of the CoOP-WEST project during monthly summer surveys in 2000, 2001 and 2002. The high concentrations of chlorophyll were made up mostly of larger cells; the phytoplankton communities that resulted were dominated by centric diatoms. The highest chlorophyll a concentrations were observed when large diatoms or small colony-forming species dominated the assemblages. In contrast, when smaller nano-flagellates and picoplankton were dominant, total chlorophyll a concentrations were over four or five-fold lower than when diatoms were prevalent, illustrating the importance of large diatoms to total phytoplankton biomass. Each year, when chlorophyll concentrations were greatest, Chaetoceros species created a Chaetoceros-dominated system. A few other genera contributed to the upwelling diatom community, mostly the centric diatoms Asterionella, Thalassiosira, Rhizosolenia (including Guinardia and Proboscia), and the pennate Nitzschia. These diatoms have been described in other coastal upwelling ecosystems, and at this study site form a functional group that are apparently well adapted to the high-nutrient, turbulent conditions that are typical of these coastal regions.  相似文献   

6.
Phytoplankton absorption and pigment characteristics of a red tide were investigated in coastal waters of the southern Benguela. Diagnostic indices indicated that dinoflagellates were the dominant phytoplankton group, with diatoms and small flagellates being of secondary importance. Very high biomass was observed close to the coast where chlorophyll a concentrations of up to 117 mg m–3 were measured. Both measured (a ph) and reconstructed pigment absorption (a pig) displayed an increasing trend with chlorophyll a, while the package effect index (Q* a) decreased, indicating increased packaging with an increase in biomass. Proportioning of the total pigment absorption between 400 and 700 nm revealed that chlorophyll a accounted for 39–65% of the absorption, while photosynthetic carotenoids (15–30%) and chlorophyll cs (15–30%) were also prominent in absorbing light for photosynthesis.  相似文献   

7.
The efficacy of ocean colour remote sensing in assessing the variability of phytoplankton biomass within Saldanha Bay is examined. Satellite estimates of chlorophyll a (Chl a) were obtained using the maximum peak-height (MPH) algorithm on full-resolution (300?m) data from the Medium Resolution Imaging Spectrometer (MERIS). Subsurface Chl a maxima often occur within Saldanha Bay below the mean detection depth of the satellite (1.5?m) during periods of thermal stratification. Consequently, the MPH product was poorly correlated to in situ data from 4?m depth (r2 and average relative percentage difference [RPD] of 0.094 and 53% respectively); however, the coefficient of determination was much improved if limited to in situ data collected under conditions of mixing (r2 and RPD of 0.869 and 89%, respectively). Composites of monthly MPH Chl a data reveal mean concentrations consistent with in situ seasonal trends of phytoplankton biomass, confirming the capability of the MPH algorithm to qualitatively resolve surface Chl a distribution within the bay.  相似文献   

8.
Dimethylsulfide enrichment in the surface microlayer of the South China Sea   总被引:5,自引:0,他引:5  
A total of 22 sea surface microlayer samples collected from the Nansha Islands waters of the South China Sea were analyzed for dimethylsulfide (DMS), chlorophyll a and nutrients including nitrate, phosphate and silicate. The DMS concentrations in surface microlayer samples ranged from 82 to 280 ng S/l with a mean of 145 ng S/l. A significant correlation was found between DMS and chlorophyll a data both in the surface microlayer as well as in the subsurface water. However, no correlation was observed between DMS and nutrient concentrations in the surface microlayer. The DMS concentrations were higher in all surface microlayer samples, compared with subsurface samples. The enrichment factor (EF) of DMS in the surface microlayer varied from 1.21 to 3.08 with an average of 1.95. The EF of DMS was significantly correlated with that of chlorophyll a in the microlayer. The enrichment of DMS in the microlayer may be due to two factors, including the in situ production from phytoplankton and the transportation from the underlying seawater. The diel variations in DMS and chlorophyll a concentrations were studied at a fixed station. The highest concentrations of DMS in the surface microlayer and subsurface water were simultaneously observed in the late afternoon (1800 h), while the highest levels of chlorophyll a were simultaneously found at night (0200 h).  相似文献   

9.
本文依托2008年夏季中国第三次北极科学考察航次,对西北冰洋海盆区和楚科奇海陆架营养盐及光合色素进行了测定和分析。根据海水理化性质将研究海区分为5个区,并使用CHEMTAX软件(Mackery et al.,1996)讨论了西北冰洋不同海区浮游植物群落组成结构及其与环境因子之间的关系。结果显示在楚科奇海陆架区,太平洋入流显著影响浮游植物生物量和群落结构。高营养盐Anadyr水团以及白令陆架水控制海域,表现出高Chl a且浮游植物以硅藻为主,相反,低营养盐如阿拉斯加沿岸流控制海域,Chl a生物量低且以微型,微微型浮游植物为主。在外陆架海区,海冰覆盖情况影响着水团的物理特征及营养盐浓度水平,相应地显著影响浮游植物群落结构。在海冰覆盖区域,硅藻生物量站到总Chl a生物量的75%以上;在靠近门捷列夫深海平原海区,受相对高盐的冰融水影响(MW-HS),营养盐浓度和Chl a浓度相对海冰覆盖区略高,浮游植物结构中微型、微微型藻类比重增加,硅藻比例则降至33%;南加拿大海盆无冰海区(IfB),表层水盐度最淡,营养盐浓度最低,相应地显示出低Chl a生物量,表明海冰消退,开阔大洋持续时间延长,将导致低生物量及激发更小型浮游植物的生长,并不有利于有机碳向深海的有效输出。  相似文献   

10.
The features of the vertical distribution of chlorophyll a, particulate organic carbon and its isotopic composition, total suspended particulate matter (SPM), and the structure of the phytoplankton community in the Middle and South Caspian Sea in May–June 2012 are discussed. The subsurface chlorophyll a maximum (SCM) was found everywhere at depths of ~20 to 40–60 m. The position of this layer is confined to the depth of the seasonal thermocline, which is determined by the development of a cold-water (dark) phytocenosis. The genesis of this layer was studied. The increase in chlorophyll a concentration in this layer is caused by an abundance of phytoplankton or an increased concentration of this phytopigments per algal cell. The highest values of the studied organic compounds and phytoplankton biomass are revealed as close to the seasonal thermocline extending from the southern periphery of the Derbent Depression to the Apsheron Sill, which is determined by the bottom topography. The presence of chlorophyll a at depths exceeding 300 m (up to ≥1 mg/m3) was revealed. This was supported by findings of individual algal cells containing chlorophyll a and even their accumulations in the deep water layer. The most probable mechanisms responsible for the presence of these cells at the deep water level are discussed in the paper. The vertical distribution of the values of the organic carbon isotopic composition is primarily controlled by the vertical structure of phytoplankton and chlorophyll a in the water column up to ~500 m and by biogeochemical processes at the redox barrier (~600 m layer). The relative stability of chlorophyll a and the stability of pheophytin a in anaerobic environments were verified. A significant amount of weakly transformed chlorophyll a was found close the sea bottom.  相似文献   

11.
To verify the hypothesis that the growth of phytoplankton in the Western Subarctic Gyre (WSG), which is located in the northwest subarctic Pacific, is suppressed by low iron (Fe) availability, an in situ Fe fertilization experiment was carried out in the summer of 2001. Changes over time in the abundance and community structure of phytoplankton were examined inside and outside an Fe patch using phytoplankton pigment markers analyzed by high-performance liquid chromatography (HPLC) and flow cytometry (FCM). In addition, the abundance of heterotrophic bacteria was also investigated by FCM. The chlorophyll a concentration was initially ca. 0.9 μg l−1 in the surface mixed layer where diatoms and chlorophyll b-containing green algae (prasinophytes and chlorophytes) were predominant in the chlorophyll biomass. After the iron enrichment, the chlorophyll a concentration increased up to 9.1 μg l−1 in the upper 10 m inside the Fe patch on Day 13. At the same time, the concentration of fucoxanthin (a diatom marker) increased 45-fold in the Fe patch, and diatoms accounted for a maximum 69% of the chlorophyll biomass. This result was consistent with a microscopic observation showing that the diatom Chaetoceros debilis had bloomed inside the Fe patch. However, chlorophyllide a concentrations also increased in the Fe patch with time, and reached a maximum of 2.2 μg l−1 at 5 m depth on Day 13, suggesting that a marked abundance of senescent algal cells existed at the end of the experiment. The concentration of peridinin (a dinoflagellate marker) also reached a maximum 24-fold, and dinoflagellates had contributed significantly (>15%) to the chlorophyll biomass inside the Fe patch by the end of the experiment. Concentrations of 19′-hexanoyloxyfucoxanthin (a prymnesiophyte marker), 19′-butanoyloxyfucoxanthin (a pelagophyte marker), and alloxanthin (a cryptophyte marker) were only incremented a few-fold increment inside the Fe patch. On the contrary, chlorophyll b concentration reduced to almost half of the initial level in the upper 10 m water column inside the Fe patch at the end of the experiment. A decrease with time in the abundance of eukaryotic ultraphytoplankton (<ca. 5 μm in size), in which chlorophyll b-containing green algae were possibly included was also observed by FCM. Overall, our results indicate that Fe supply can dramatically alter the abundance and community structure of phytoplankton in the WSG. On the other hand, cell density of heterotrophic bacteria inside the Fe patch was maximum at only ca. 1.5-fold higher than that outside the Fe patch. This indicates that heterotrophic bacteria abundance was little respondent to the Fe enrichment.  相似文献   

12.
本文基于卫星遥感的叶绿素a浓度与颗粒物后向散射系数月平均数据以及其他海洋与气象参数,详细分析了两个生物光学参量在季节尺度上的相关性及其与物理参数的耦合关系,并运用光驯化模型分析了南海表层水体浮游植物的生理学季节变化特征。结果表明,受南海地形和风场等物理参量的变化,南海叶绿素a浓度与颗粒物后向散射系数存在显著的季节和空间分布特征,具有一定的共变性和差异性。在南海近岸及浅水区,叶绿素a浓度与颗粒物后向散射系数有很好的耦合关系;而在南海深水海盆区,叶绿素a浓度冬高夏低,其季节循环过程与颗粒物后向散射系数相反,这主要是受浮游植物生理学过程的影响。"生物量控制区"与"光驯化控制区"的分界在南海与陆架-海盆分界线一致,体现了水深条件对浮游植物生理状态的影响。此外本文还发现,在吕宋海峡西部海区,叶绿素a与颗粒物后向散射系数的关系表现出"生物量-光驯化共同控制"的特点。  相似文献   

13.
Available data on phytoplankton and bacterial abundance and production off the coasts of southern Africa (to the 500 m depth contour) have been assembled and analysed for a network analysis of carbon flow in the Benguela ecosystem. Phytoplankton carbon biomass (from measurements of chlorophyll a) in the northern Benguela (2 558 300 tons) was considerably higher than in the southern Benguela (671 420 and 516 400 tons for the West and South coasts respectively). However, overall annual production (from C14-uptake measurements) was similar, 77 416 608, 76 399 973 and 78 988 020 tons C·year?1 respectively. Phytoplankton respiration and sedimentation losses were calculated as functions of primary production and therefore followed similar trends. From the most conservative estimates (mean bacterial biomass of 10 mg C·m?3 and average P:B of 0,2·day?1) bacterial biomass is 2–7 per cent of phytoplankton biomass in the northern and southern Benguela, and bacterial production is 3–5 per cent of primary production. Assuming a net growth yield of 30 per cent, bacteria would need to consume 9–15 per cent of the total primary production in order to meet their requirements for carbon consumption. Calculations based on a mean bacterial biomass of 40 mg C·m?3 and a mean growth rate of 0,5·day?1 in the upper 30 m of the water column show bacterial biomass to be 8–27 per cent of phytoplankton biomass and bacterial production to be 26–44 per cent of phytoplankton production. Bacterial carbon consumption requirements at these rates amount to 86–147 per cent of total primary production.  相似文献   

14.
A survey was made of the Southwest Indian Ocean frontal region between 30 and 50°E containing the Agulhas Return, Subtropical and Subantarctic Fronts. From CTD, SeaSoar and extracted samples the distribution of nitrate, silicate and chlorophyll a is shown to be strongly linked to the front and water mass structure, varying zonally and meridionally. Surface chlorophyll a concentrations were low to the north and south leaving a band of elevated chlorophyll between the Subtropical and Subantarctic Fronts. The low concentration of chlorophyll a to the north, in Subtropical Water, was clearly due to nitrate limitation. Between the Subtropical and Subantarctic Fronts, where the chlorophyll a concentrations were highest, the surface layer showed silicate depletion limiting diatom growth. South of the Subantarctic Front there were deep extending, low concentrations of chlorophyll a, but despite plentiful supplies of macro-nutrients and a well-stratified surface layer, high concentrations of chlorophyll a were absent. Changes from west to east were associated with the meandering of the Southern Ocean Fronts, especially the Subtropical Front, and their strength and proximity to each other. Concentrations of chlorophyll a peaked where the Agulhas Return, Subtropical and Subantarctic Fronts were in close proximity. Combined frontal structures appear to have particularly pronounced vertical stability and are associated with enhanced upwelling of nutrients and leakage of nutrients across the front. Light levels are high within the shallow stable layer. Such conditions are clearly favourable for biological growth and support the development of larger-celled phytoplankton communities.  相似文献   

15.
The East Sea(Sea of Japan)is a marginal,semi-closed sea in the northwestern Pacific.The Ulleung Basin area,which is located near the subpolar front of the East Sea,is known to have high primary production and good fisheries in spring season.After episodic wind-driven events during the spring of 2017,horizontal and vertical profiles of physical chemical biological factors were investigated at 29 stations located in the Ulleung Basin area.In addition,growth responses of phytoplankton communities to nutrient additions were evaluated by bioassay experiments to understand the fluctuation of phytoplankton biomass.Because of strong northwestern wind,phytoplankton biomass was scattered and upwelling phenomenon might be suppressed in this season.The phytoplankton abundances in the coastal stations were significantly higher than offshore and island stations.In contrast,the nutrient and chlorophyll a(Chl a)concentrations and the phytoplankton biomass were quite low in all locations.Bacillariophyceae was dominated group(>75.1%for coastal,40.0%for offshore and 43.6%for island stations).In the algal bioassays,the phytoplankton production was stimulated by N availability.The in vivo Chl a values in the+N and+NP treatments were significantly higher than the values in the control and the+P treatments.Based on the field survey,the higher nutrients in coastal waters affected the growth of diatom assemblages,however,little prosperity of phytoplankton was observed in the offshore waters despite the injection of sufficient nutrients in bioassay experiments.The growth of phytoplankton depended on the initial cell density.All of results indicated that a dominant northwestern wind led to a limited nutrients condition at euphotic layers,and the low level of biomass supply from the coasts resulted in low primary production.Both supplying nutrients and introducing phytoplankton through the currents are critical to maintain the high productivity in the Ulleung Basin area of the East Sea.  相似文献   

16.
Primary production, nutrient concentrations, phytoplankton biomass (incl. chlorophyll a) and water transparency (Secchi depth), are important indicators of eutrophication. Earlier basin-wide primary production estimates for the Baltic Sea, a shallow shelf sea, were based mainly on open-sea data, neglecting the fundamentally different conditions in the large river plumes, which might have substantially higher production. Mean values of the period 1993–1997 of nutrient concentrations (phosphate, nitrate, ammonium and silicate), phytoplankton biomass, chlorophyll a (chl a) concentration, turbidity and primary production were calculated in the plumes of the rivers Oder, Vistula and Daugava and Klaipeda Strait as well as the open waters of the Arkona Sea, Bornholm Sea, eastern Gotland Sea and the Gulf of Riga. In the plumes, these values, except for primary production, were significantly higher than in the open waters. N:P ratios in the plumes were >16 (with some exceptions in summer and autumn), indicating potential P-limitation of phytoplankton growth, whereas they were <16 in the open Baltic Proper, indicating potential N-limitation. On the basis of in situ phytoplankton primary production, phytoplankton biomass and nutrient concentrations, the large river plumes and the Gulf of Riga could be characterized as eutrophic and the outer parts of the coastal waters and the open sea as mesotrophic. Using salinity to define the border of the plumes, their mean extension was calculated by means of a circulation model. Taking into account the contribution of coastal waters, the primary production in the Baltic Proper and the Gulf of Riga was 42·6 and 4·3×106 t C yr−1, respectively. Hence, an annual phytoplankton primary production in the whole Baltic Sea was estimated at 62×106 t C yr−1. The separate consideration of the plumes had only a minor effect on the estimation of total primary production in comparison with an estimate based on open sea data only. There is evidence for a doubling of primary production in the last two decades. Moreover, a replacement of diatoms by dinoflagellates during the spring bloom was noticed in the open sea but not in the coastal waters. A scheme for trophic classification of the Baltic Sea, based on phytoplankton primary production and biomass, chl a and nutrient concentrations, is proposed.  相似文献   

17.
The species composition, cell concentration (N), and biomass (B) of the phytoplankton, as well as the chlorophyll a (Chl a) concentration, primary production (PP), and the concentrations of the dissolved inorganic micronutrients (phosphorus, silica, nitrogen as nitrite), were estimated for Kandalaksha Bay (KB), Dvina Bay (DB), and the basin (Bas) of the White Sea in August of 2004. The micronutrient concentrations were lower compared to the average long-term values for the summer period. The Chl a concentration varies from 0.9 to 2.0 mg/m3 for most of the studied areas, reaching up to 7.5 mg/m3 in the Northern Dvina River estuary. The surface water layer of the DB was the most productive area, where the PP reached up to 270–375 mg C/(m3 day). The phytoplankton biomass varied from 11 to 205 mg C/m3 with the highest values observed in the Bas and DB. Three groups of stations were defined during the analysis of the phytoplankton’s species composition similarity. The dinoflagellates Dinophysis norvegica and Ceratium fusus were particular to the phytoplankton assemblages in the KB; the diatom Ditylum brightwellii was particular to the upper and central parts of the DB. These three phytoplankton species were less abundant in the Bas.  相似文献   

18.
本文讨论了2013年5月南海东沙天然气水合物区浮游植物生物量和生产力粒级结构特征及其环境影响因素。结果表明,研究海域表现出典型的低营养盐、低叶绿素a、低生产力特征,浮游植物叶绿素a和初级生产力具有明显的次表层最大值现象。东沙海域生物量和初级生产力粒级结构差异性显著,从生物量和生产力贡献度来看,表现为微微型浮游植物> 微型浮游植物> 小型浮游植物。生物量的垂直分布结果表明,春季不同粒级类群浮游植物在真光层内的分布存在明显不同,比如小型浮游植物在真光层内分布较均匀;微型浮游植物则主要分布于近表层或真光层中部,而微微型浮游植物则主要分布于真光层中部和底部。微微型浮游植物在纬度较低的热带贫营养海区之所以能够占主导优势,最主要的原因是其极小的细胞体积和较大的表面积使其有利于营养竞争。相关性分析表明,南海东沙浮游植物各粒级生物量与温度、pH显著正相关,与硅酸盐、磷酸盐显著负相关;浮游植物各粒级生产力与温度显著正相关,与盐度、磷酸盐显著负相关。磷酸盐含量是影响东沙海域浮游植物粒级结构差异的重要因素之一,同时,光辐照度和水体的真光层深度对东沙天然气水合物区不同粒径浮游植物的垂直分布起着更为重要的调控作用。  相似文献   

19.
Variations in the distribution of chemotaxonomic pigments were monitored in the Arabian Sea and the Gulf of Oman at the end of the SW monsoon in September 1994 and during the inter-monsoon period in November/December 1994 to determine the seasonal changes in phytoplankton composition. The Gulf of Oman was characterized by sub-surface chlorophyll maxima at 20-40 m during both seasons, and low levels of divinyl chlorophyll a indicated that prochlorophytes did not contribute significantly to the total chlorophyll a. Prymnesiophytes (19′-hexanoyloxyfucoxanthin), diatoms (fucoxanthin) and chlorophyll b containing organisms accounted for most of the phytoplankton biomass in September, while prymnesiophytes dominated in November/December. In the Arabian Sea in September, high total chlorophyll a concentrations up to 1742 ng l-1 were measured in the coastal upwelling region and a progressive decline was monitored along the 1670 km offshore transect to oligotrophic waters at 8°N. Divinyl chlorophyll a was not detected along this transect except at the two most southerly stations where prochlorophytes were estimated to contribute 25–30% to the total chlorophyll a. Inshore, the dominance of fucoxanthin and/or hexanoyloxyfucoxanthin indicated that diatoms and prymnesiophytes generally dominated the patchy phytoplankton community, with zeaxanthin-containing Synechococcus also being important, especially in surface waters. At the southern oligotrophic localities, Synechococcus and prochlorophytes dominated the upper 40 m and prymnesiophytes were the most prominent at the deep chlorophyll maximum. During the inter-monsoon season, total chlorophyll a concentrations were generally half those measured in September and highest levels were found on the shelf (1170 ng l-1). Divinyl chlorophyll a was detected at all stations along the Arabian Sea transect, and we estimated that prochlorophytes contributed between 3 and 28% to the total chlorophyll a, while at the two oligotrophic stations this proportion increased to 51–52%. While procaryotes were more important in November/December than September, eucaryotes still accounted for >50% of the total chlorophyll a. Pigment/total chlorophyll a ratios indicated that 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes were the dominant group, although procaryotes accounted for 65% at the two southerly oligotrophic stations.  相似文献   

20.
An examination of large archives (1950–1997) of the oceanographic and atmospheric data from the northwestern North Pacific Subtropical Gyre has revealed clear linkages between atmospheric forcing factors, physical processes and biological events. Large changes in the winter and spring biomass of phytoplankton and macroplankton observed over annual, decadal and inter-decadal time scales could clearly be attributed to climate-related changes in oceanographic processes. Interannual changes in the intensity of the winter-time East Asian Monsoon had a significant impact on the extent of convective overturning, on nitrate inputs into the euphotic zone and the concentrations of chlorophyll a in winter and during the following spring. A prolonged period of deeper winter mixed layers observed from the mid-1970s to the mid-1980s led to a sizeable increase in winter mixed-layer nitrate concentrations. This change resulted in a decrease in winter-time phytoplankton biomass. Spring-time chlorophyll a, in contrast, showed a steady increase during this period. The decline in winter phytoplankton biomass could be attributed to the depths of mixed layer. A deeper mixed layer prevents phytoplankton from remaining in the euphotic zone for long enough to photosynthesize and grow, leaving substantial amounts of nutrients unutilised. However, as a result of stratification of the water column in spring following each of these winters, phytoplankton could take advantage of the enhanced ambient concentrations of nutrients and increase its biomass. Another noteworthy observation for the period from the mid-1970s to the early 1980s is that the western subtropical gyre progressively became phosphate limited. The period of diminishing mixed-layer phosphate concentrations was observed in our study area from the early 1990s onwards was consistent with recent observations at Station ALOHA in the eastern subtropical gyre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号