首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In binary stellar systems, exoplanet searches have revealed planetary mass companions orbiting both in circumstellar and in circumbinary orbits. Modelling studies suggest increased dynamical complexity around the young stars that form such systems. Circumstellar and circumbinary disks likely exhibit different physical conditions for planet formation, which also depends on the stellar separation. Although binaries and higher order multiple stars are relatively common in nearby star-forming regions, surprisingly few systems with circumbinary distributions of proto-planetary material have been found. With its spectacular ring of dust and gas encircling the central triple star, one such system, GG Tau A, has become a unique laboratory for investigating the physics of circumsystem gas and dust evolution. We review here its physical properties.  相似文献   

2.
The formation of a planetary system from the protoplanetary disk leads to destruction of the latter; however, a debris disk can remain in the form of asteroids and cometary material. The motion of planets can cause the formation of coorbital structures from the debris disk matter. Previous calculations have shown that such a ring-like structure is more stable if there is a binary star in the center of the system, as opposed to a single star. To analyze the properties of the coorbital structure, we have calculated a grid of models of binary star systems with a circumbinary planet moving in a planetesimal disk. The calculations are performed considering circular orbits of the stars and the planet; the mass and position of the planet, as well as the mass ratio of the stars, are varied. The analysis of the models shows that the width of the coorbital ring and its stability significantly depend on the initial parameters of the problem. Additionally, the empirical dependences of the width of the coorbital structure on the parameters of the system have been obtained, and the parameters of the models with the most stable coorbital structures have been determined. The results of the present study can be used for the search of planets around binary stars with debris disks.  相似文献   

3.
We present different mass ratio distributions of massive black hole(MBH)binaries due to different mechanisms involved in binary evolution. A binary system of MBHs forms after the merger of two galaxies, which has three stages: the dynamical friction stage, the stellar scattering or circumbinary disk stage, and the gravitational radiation stage. The second stage was once believed to be the "final parsec problem"(FPP) as the binary stalled at this stage because of the depletion of stars. Now, the FPP has been shown to no longer be a problem. Here we get two different mass ratio distributions of MBH binaries under two mechanisms, stellar scattering and the circumbinary disk interaction. For the circumbinary disk mechanism, we assume that the binary shrinks by interaction with a circumbinary disk and the two black holes(BHs)have different accretion rates in the simulation. We apply this simple assumption to the hierarchical coevolution model of MBHs and dark matter halos, and we find that there will be more equal-mass MBH binaries in the final coalescence for the case where the circumbinary mechanism operates. This is mainly because the secondary BH in the circumbinary disk system accretes at a higher rate than the primary one.  相似文献   

4.
Possible configurations of the planetary systems of the binary stars α Cen A–BandEZAqr A–C are analyzed. The P-type orbits—circumbinary ones, i.e., the orbits around both stars of the binary, are studied. The choice of these systems is dictated by the fact that α Cen is closest to us in the Galaxy, while EZ Aqr is the closest system whose circumbinary planets, as it turns out, may reside in the “habitability zone.” The analysis has been performed within the framework of the planar restricted three-body problem. The stability diagrams of circumbinary motion have been constructed: on representative sets of initial data (in the pericentric distance–eccentricity plane), we have computed the Lyapunov spectra of planetary motion and identified the domains of regular and chaotic motion through their statistical analysis. Based on present views of the dynamics and architecture of circumbinary planetary systems, we have determined the most probable planetary orbits to be at the centers of the main resonance cells, at the boundary of the dynamical chaos domain around the parent binary star, which allows the semimajor axes of the orbits to be predicted. In the case of EZ Aqr, the orbit of the circumbinary planet is near the habitability zone and, given that the boundary of this zone is uncertain, may belong to it.  相似文献   

5.
We present results of 3D numerical simulations of the matter flow in the disk of a binary T Tauri star. It is shown that two bow-shocks caused by the supersonic motion of the binary components in the gas of the disk are formed in the system having parameters typical for T Tauri stars. These bow-shocks significantly change the flow pattern. In particular, for systems with circular orbits they determine the size and shape of the inner gap. We also show that the redistribution of the angular momentum due to the bow-shocks leads to occurrence of two matter flows propagating from the inner edge of the circumbinary disk to the components. Further redistribution of this matter between the components is considered.  相似文献   

6.
We consider a model of cyclic brightness variations in a young star with a low-mass (q = M 2/M 1 ≤ 0.1) companion that accretes matter from the remnants of a protostellar cloud (circumbinary disk). We assume that the orbit of the companion is circular and that its plane does not coincide with the disk plane. We have computed grids of hydrodynamic models for such a binary by the SPH method based on which we have investigated the circumstellar extinction variations produced by the streams of matter and density waves excited in the circumbinary disk by the orbital motion of the companion. We show that, depending on the inclination and orientation of the binary’s line of nodes relative to the observer, the brightness of the primary component can undergo various (in shape and depth) oscillations with a period equal to the orbital one. In contrast to the models with coplanar circular orbits, the accretion rate onto the components of a binary with a noncoplanar orbit depends on the orbital phase. The results of our computations can be used to study the cyclic activity of UX Ori stars and young eclipsing binaries with anomalously long eclipses.  相似文献   

7.
We consider a model for the cyclic activity of young binary stars that accrete matter from the remnants of a protostellar cloud. If the orbit of such a binary system is inclined at a small angle to the line of sight, then the streams of matter and the density waves excited in the circumbinary disk can screen the primary component of the binary from the observer. To study these phenomena by the SPH (smoothed particle hydrodynamics) method, we have computed grids of hydrodynamic models for binary systems based on which we have constructed the light curves as a function of the orbital phase. The main emphasis is on investigating the properties of the brightness oscillations. Therefore, the model parameters were varied within the following ranges: the component mass ratio q = M 2: M 1 = 0.2–0.5 and the eccentricity = 0–0.7. The parameter that defined the binary viscosity was also varied. We adopted optical grain characteristics typical of circumstellar dust. Our computations have shown that bimodal oscillations are excited in binaries with eccentric orbits, provided that the binary components do not differ too much in mass. In this case, the ratios of the periods and amplitudes of the bimodal oscillations and their shape depend strongly on the inclination of the binary plane and its orientation relative to the observer. Our analysis shows that the computed light curves can be used in interpreting the cyclic activity of UX Ori stars.  相似文献   

8.
The dynamics of circumbinary planetary systems (the systems in which the planets orbit a central binary) with a small binary mass ratio discovered to date is considered. The domains of chaotic motion have been revealed in the “pericentric distance–eccentricity” plane of initial conditions for the planetary orbits through numerical experiments. Based on an analytical criterion for the chaoticity of planetary orbits in binary star systems, we have constructed theoretical curves that describe the global boundary of the chaotic zone around the central binary for each of the systems. In addition, based on Mardling’s theory describing the separate resonance “teeth” (corresponding to integer resonances between the orbital periods of a planet and the binary), we have constructed the local boundaries of chaos. Both theoretical models are shown to describe adequately the boundaries of chaos on the numerically constructed stability diagrams, suggesting that these theories are efficient in providing analytical criteria for the chaoticity of planetary orbits.  相似文献   

9.
Variability of active galactic nuclei is not well understood. One possible explanation is existence of supermassive binary black holes (SMBBH) in their centres. It is expected that major mergers are common in the Universe. It is expected that each supermassive black hole of every galaxy eventually finish as a SMBBH system in the core of newly formed galaxy. Here we model the emission line profiles of active galactic nuclei (AGN) assuming that the flux and emission line shape variations are induced by supermassive binary black hole systems (SMBBH). We assume that the accreting gas inside the circumbinary (CB) disk is photo ionized by mini accretion disk emission around each SMBBH. We calculate variations of emission line flux, shifts and shapes for different parameters of SMBBH orbits. We consider cases with different masses and inclinations for circular orbits and measure the effect to the shape of emission line profiles and flux variability.  相似文献   

10.
The number of confirmed and suspected close T Tauri binaries (period days) is increasing. We discuss some systems with enhanced emission line activity and periodic line profile changes. Non-axisymmetric flows of plasma in the region between the circumbinary disk and the stars can be generated through the influence of the secondary component. Such enhanced activity is found around binaries with eccentric as well as circular orbits. We discuss our observations of the T Tauri stars RW Aurigae A and RU Lupi, which may host very close brown dwarf companions. Model simulations indicate that non-axisymmetric flows are generated around close binaries with circumbinary disks, also in systems with circular orbits.  相似文献   

11.
Using the GADGET-2 code modified by us, we have computed hydrodynamic models of a protoplanetary disk perturbed by a low-mass companion. We have considered the cases of circular and eccentric orbits coplanar with the disk and inclined relative to its midplane. During our simulations we computed the column density of test particles on the line of sight between the central star and observer. On this basis we computed the column density of circumstellar dust by assuming the dust and gas to be well mixed with a mass ratio of 1: 100. To study the influence of the disk orientation relative to the observer on the interstellar extinction, we performed our computations for four inclinations of the line of sight to the disk plane and eight azimuthal directions. The column densities in the circumstellar disk of the central star and the circumbinary disk were computed separately. Our computations have shown that periodic column density oscillations can arise in both inner and circumbinary disks. The amplitude and shape of these oscillations depend on the system’s parameters (the orbital eccentricity and inclination, the component mass ratio) and its orientation in space. The results of our simulations can be used to explain the cyclic brightness variations of young UX Ori stars.  相似文献   

12.
The Kozai mechanism often destabilizes high-inclination orbits. It couples changes in the eccentricity and inclination, and drives high inclination, circular orbits to low inclination, eccentric orbits. In a recent study of the dynamics of planetesimals in the quadruple star system HD 98800, there were significant numbers of stable particles in circumbinary polar orbits about the inner binary pair which are apparently able to evade the Kozai instability.
Here, we isolate this feature and investigate the dynamics through numerical and analytical models. The results show that the Kozai mechanism of the outer star is disrupted by a nodal libration induced by the inner binary pair on a shorter time-scale. By empirically modelling the period of the libration, a criteria for determining the high-inclination stability limits in general triple systems is derived. The nodal libration feature is interesting and, although affecting inclination and node only, shows many parallels to the Kozai mechanism. This raises the possibility that high-inclination planets and asteroids may be able to survive in multistellar systems.  相似文献   

13.
We present the results of hydrodynamic simulations of Jovian mass protoplanets that form in circumbinary discs. The simulations follow the orbital evolution of the binary plus protoplanet system acting under their mutual gravitational forces, and forces exerted by the viscous circumbinary disc. The evolution involves the clearing of the inner circumbinary disc initially, so that the binary plus protoplanet system orbits within a low density cavity. Continued interaction between disc and protoplanet causes inward migration of the planet towards the inner binary. Subsequent evolution can take three distinct paths: (i) the protoplanet enters the 4 : 1 mean motion resonance with the binary, but is gravitationally scattered through a close encounter with the secondary star; (ii) the protoplanet enters the 4 : 1 mean motion resonance, the resonance breaks, and the planet remains in a stable orbit just outside the resonance; (iii) when the binary has initial eccentricity   e bin≥ 0.2  , the disc becomes eccentric, leading to a stalling of the planet migration, and the formation of a stable circumbinary planet.
These results have implications for a number of issues in the study of extrasolar planets. The ejection of protoplanets in close binary systems provides a source of 'free-floating planets', which have been discovered recently. The formation of a large, tidally truncated cavity may provide an observational signature of circumbinary planets during formation. The existence of protoplanets orbiting stably just outside a mean motion resonance (4 : 1) in the simulations indicate that such sites may harbour planets in binary star systems, and these could potentially be observed. Finally, the formation of stable circumbinary planets in eccentric binary systems indicates that circumbinary planets may not be uncommon.  相似文献   

14.
We investigate the formation of binary stellar systems. We consider a model where a 'seed' protobinary system forms, via fragmentation, within a collapsing molecular cloud core and evolves to its final mass by accreting material from an infalling gaseous envelope. This accretion alters the mass ratio and orbit of the binary, and is largely responsible for forming the circumstellar and/or circumbinary discs.
Given this model for binary formation, we predict the properties of binary systems and how they depend on the initial conditions within the molecular cloud core. We predict that there should be a continuous trend such that closer binaries are more likely to have equal-mass components and are more likely to have circumbinary discs than wider systems. Comparing our results with observations, we find that the observed mass-ratio distributions of binaries and the frequency of circumbinary discs as a function of separation are most easily reproduced if the progenitor molecular cloud cores have radial density profiles between uniform and 1/ r (e.g., Gaussian) with near-uniform rotation. This is in good agreement with the observed properties of pre-stellar cores. Conversely, we find that the observed properties of binaries cannot be reproduced if the cloud cores are in solid-body rotation and have initial density profiles which are strongly centrally condensed. Finally, in agreement with the radial-velocity searches for extrasolar planets, we find that it is very difficult to form a brown dwarf companion to a solar-type star with a separation ≲10 au, but that the frequency of brown dwarf companions should increase with larger separations or lower mass primaries.  相似文献   

15.
We present subarcsecond thermal infrared imaging of HD 98800, a young quadruple system composed of a pair of low-mass spectroscopic binaries separated by 0&farcs;8 (38 AU), each with a K-dwarf primary. Images at wavelengths ranging from 5 to 24.5 μm show unequivocally that the optically fainter binary, HD 98800B, is the sole source of a comparatively large infrared excess on which a silicate emission feature is superposed. The excess is detected only at wavelengths of 7.9 μm and longer, peaks at 25 μm, and has a best-fit blackbody temperature of 150 K, indicating that most of the dust lies at distances greater than the orbital separation of the spectroscopic binary. We estimate the radial extent of the dust with a disk model that approximates radiation from the spectroscopic binary as a single source of equivalent luminosity. Given the data, the most likely values of disk properties in the ranges considered are Rin=5.0+/-2.5 AU, DeltaR=13+/-8 AU, lambda0=2+4-1.5 μm, gamma=0+/-2.5, and sigmatotal=16+/-3 AU2, where Rin is the inner radius, DeltaR is the radial extent of the disk, lambda0 is the effective grain size, gamma is the radial power-law exponent of the optical depth tau, and sigmatotal is the total cross section of the grains. The range of implied disk masses is 0.001-0.1 times that of the Moon. These results show that, for a wide range of possible disk properties, a circumbinary disk is far more likely than a narrow ring.  相似文献   

16.
We present 1 μm Hubble Space Telescope/near-infrared camera and multiobject spectrometer resolved imaging polarimetry of the GG Tau circumbinary ring. We find that the ring displays east-west asymmetries in surface brightness as well as several pronounced irregularities but is smoother than suggested by ground-based adaptive optics observations. The data are consistent with a 37 degrees system inclination and a projected rotational axis at a position angle of 7 degrees east of north, determined from millimeter imaging. The ring is strongly polarized, up to approximately 50%, which is indicative of Rayleigh-like scattering from submicron dust grains. Although the polarization pattern is broadly centrosymmetric and clearly results from illumination of the ring by the central stars, departures from true centrosymmetry and the irregular flux suggest that binary illumination, scattering through unresolved circumstellar disks, and shading by these disks may all be factors influencing the observed morphology. We confirm a approximately 0&farcs;25 shift between the inner edges of the near-infrared and millimeter images and find that the global morphology of the ring and the polarimetry provide strong evidence for a geometrically thick ring. A simple Monte Carlo scattering simulation is presented that reproduces these features and supports the thick-ring hypothesis. We cannot confirm filamentary streaming from the binary to the ring, also observed in the ground-based images, although it is possible that there is material inside the dynamically cleared region that might contribute to filamentary deconvolution artifacts. Finally, we find a faint fifth point source in the GG Tau field that, if it is associated with the system, is almost certainly a brown dwarf.  相似文献   

17.
J.S. Hall  L.A. Riley 《Icarus》1974,23(2):144-156
Intensity and polarization measures have been made of Saturn in the ultraviolet (0.37 μm) and green (0.57 μm) since 1968, at phase angles which ranged from 0°.0 to 6°.1. During this interval, the tilt of the planet's equatorial plane changed from 11°.2 to 26°.4, with the south pole toward the Earth.The polarization of the disk in the ultraviolet shows a strongly radial pattern at all observed phase angles, with a maximum of about 3.7 × 10?2 at all limbs and a gradual decrease to nearly zero at the center. Where the rings overlap the disk, the better observations show their polarization to be small and in the direction of the equatorial plane.In green light and close to opposition the relatively small polarization of the disk appeared to be radial in 1968, but by 1973 polarization (still radial ) was detected only in the southern hemisphere. In all years the polarization appears to be strongest near the south pole, particularly when the pole is nearest the limb. When the pole is furthest from the limb (tilt = 26°), there is a suggestion that maximum polarization may occur at the pole itself. At large phase angles the polarization along the E-W diameter shows a prominent phase-dependent component of 1.0 × 10?2 in a N-S direction.The intensity profiles in the ultraviolet suggest some transmission of light by ring A and less than about 20% by ring B. A limiting value of 39% was obtained from the polarization data.  相似文献   

18.
19.
We consider a model for the cyclic brightness variations of a young star with a low-mass companion that accretes matter from the remnants of a protostellar cloud. At small inclinations of the binary orbit to the line of sight, the streams of matter and the density waves excited in the circumbinary disk can screen the primary component of the binary from the observer. To study these phenomena, we have computed grids of hydrodynamic models for binary systems by the SPH method based on which we have calculated the phase light curves for the different orientations of the orbit. The model parameters were varied within the following ranges: the component mass ratio q = 0.01–0.1 and the eccentricity e = 0–0.5. We adopted optical grain characteristics typical of circumstellar dust. Our computations have shown that the brightness oscillations with orbital phase can have a complex structure. The amplitudes and shapes of the light curves depend strongly on the inclination of the binary orbit and its orientation relative to the observer and on the accretion rate. The results of our computations are used to analyze the cyclic activity of UX Ori stars.  相似文献   

20.
A scenario is considered for the formation of a planetary system through the merging of a binary star comprised of low-mass (0.5–1 M ) stars in the stage of contracting towards the main sequence. According to our previous computations (Sirotkin and Karetnikov, 2006), under certain conditions, the destruction of the more massive component can result in the formation of a central star, an accretion disk, and an extended arm. The extended arm is fragmented to form clouds of planetary masses (<5M J). The formed disk and clouds rotate in the same direction as the central star. The clouds are in elongated orbits (e > 0.3) lying in the orbital plane of the initial binary system. To test these earlier results, we repeated computations for the same system parameters but with higher accuracy. The new computations confirmed the earlier results and gave new information about the cloud and disk structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号