首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Chang'e-3 panoramic camera, which is composed of two cameras with identical functions, performances and interfaces, is installed on the lunar rover mast. It can acquire 3D images of the lunar surface based on the principle of binocular stereo vision. By rotating and pitching the mast, it can take several photographs of the patrol area. After stitching these images, panoramic images of the scenes will be obtained.Thus the topography and geomorphology of the patrol area and the impact crater, as well as the geological structure of the lunar surface, will be analyzed and studied.In addition, it can take color photographs of the lander using the Bayer color coding principle. It can observe the working status of the lander by switching between static image mode and dynamic video mode with automatic exposure time. The focal length of the lens on the panoramic camera is 50 mm and the field of view is 19.7?umination and viewing conditions, the largest signal-to-no×14.5?.Under the best illise ratio of the panoramic camera is 44 d B. Its static modulation transfer function is 0.33. A large number of ground testing experiments and on-orbit imaging results show that the functional interface of the panoramic camera works normally. The image quality of the panoramic camera is satisfactory. All the performance parameters of the panoramic camera satisfy the design requirements.  相似文献   

2.
The Low-Frequency Radio Spectrometer (LFRS) is a scientific payload onboard the Chang’e-4 lunar lander launched in December 2018.The LFRS provides in-situ measurements of the low-frequency radio phenomena on the far-side of the Moon for the first time in human history.To evaluate the performance of the LFRS,a series of ground experiments are conducted using an engineering model of the LFRS.It is not easy to perform the experiments because the Electro Magnetic Interference (EMI) from the Chang’e-4 lunar lander itself and the environment is very intense.The results after EMI mitigation show that the sensitivity of the LFRS may be 10~(-18)W m~(-2)Hz~(-1).  相似文献   

3.
Lunar Penetrating Radar(LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.  相似文献   

4.
Lunar Penetrating Radar(LPR) has successfully been used to acquire a large amount of scientific data during its in-situ detection. The analysis of penetrating depth can help to determine whether the target is within the effective detection range and contribute to distinguishing useful echoes from noise.First, this study introduces two traditional methods, both based on a radar transmission equation, to calculate the penetrating depth. The only difference between the two methods is that the first method adopts system calibration parameters given in the calibration report and the second one uses high-voltage-off radar data. However, some prior knowledge and assumptions are needed in the radar equation and the accuracy of assumptions will directly influence the final results. Therefore, a new method termed the Correlation Coefficient Method(CCM) is provided in this study, which is only based on radar data without any a priori assumptions. The CCM can obtain the penetrating depth according to the different correlation between reflected echoes and noise. To be exact, there is a strong correlation in the useful reflected echoes and a random correlation in the noise between adjacent data traces. In addition, this method can acquire a variable penetrating depth along the profile of the rover, but only one single depth value can be obtained from traditional methods. Through a simulation, the CCM has been verified as an effective method to obtain penetration depth. The comparisons and analysis of the calculation results of these three methods are also implemented in this study. Finally, results show that the ultimate penetrating depth of Channel 1 and the estimated penetrating depth of Channel 2 range from 136.9 m to 165.5 m(ε_r = 6.6) and from 13.0 m to 17.5 m(ε_r = 2.3), respectively.  相似文献   

5.
There is enormous potential for more mobile planetary surface science. This is especially true in the case of Mars because the ability to cross challenge terrain, access areas of higher elevation, visit diverse geological features and perform long traverses of up to 200 km supports the search for past water and life. Vehicles capable of a ballistic ‘hop’ have been proposed on several occasions, but those proposals using in-situ acquired propellants are the most promising for significant planetary exploration. This paper considers a mission concept termed Mars Reconnaissance Lander using such a vehicle. We describe an approach where planetary science requirements that cannot be met by a conventional rover are used to derive vehicle and mission requirements.The performance of the hopper vehicle was assessed by adding estimates of gravity losses and mission mass constraints to recently developed methods. A baseline vehicle with a scientific payload of 16.5 kg and conservatively estimated sub-system masses is predicted to achieve a flight range of 0.97 km. Using a simple consideration of system reliability, the required cumulative range of 200 km could be achieved with a probability of around 80%. Such a range is sufficient to explore geologically diverse terrains. We therefore plot an illustrative traverse in Hypanis Valles/Xanthe Terra, which encounters crater wall sections, periglacial terrain, aqueous sedimentary deposits and a traverse up an ancient fluvial channel. Such a diversity of sites could not be considered with a conventional rover. The Mars Reconnaissance Lander mission and vehicle presents some very significant engineering challenges, but would represent a valuable complement to rovers, static landers and orbital observations.  相似文献   

6.
The Chang'e-3(CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives:(1) investigate the morphological features and geological structures at the landing site;(2) integrated in-situ analysis of minerals and chemical compositions;(3) integrated exploration of the structure of the lunar interior;(4) exploration of the lunar-terrestrial space environment, lunar surface environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System(GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem(DPS) is a part of GRAS.The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper describes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies.  相似文献   

7.
The scientific value of unmanned rovers for continued lunar exploration is considered in light of Apollo findings which suggest that the Moon's surface is more heterogeneous than expected. A set of major questions and investigations involving composition, internal structure, and thermal history are presented that form a scientific rationale for use of unmanned rovers in the post-Apollo period of lunar exploration. Visual, petrologic, chemical and geophysical measurements that are essential for an unmanned rover traverse over previously unexplored lunar terrain are discussed. Unmanned rovers are well-suited for low-cost, low-risk preliminary reconnaissance where measurement of a few definitive parameters over a wide area is more important than obtaining a wide array of detailed results at a given site.  相似文献   

8.
The Active Particle-induced X-ray Spectrometer(APXS) is an important payload mounted on the Yutu rover, which is part of the Chang'e-3 mission. The scientific objective of APXS is to perform in-situ analysis of the chemical composition of lunar soil and rock samples. The radioactive sources,55 Fe and109Cd, decay and produce α-particles and X-rays. When X-rays and α-particles interact with atoms in the surface material, they knock electrons out of their orbits, which release energy by emitting X-rays that can be measured by a silicon drift detector(SDD). The elements and their concentrations can be determined by analyzing their peak energies and intensities. APXS has analyzed both the calibration target and lunar soil once during the first lunar day and again during the second lunar day. The total detection time lasted about 266 min and more than 2000 frames of data records have been acquired. APXS has three operating modes: calibration mode, distance sensing mode and detection mode. In detection mode, work distance can be calculated from the X-ray counting rate collected by SDD. Correction for the effect of temperature has been performed to convert the channel number for each spectrum to X-ray energy. Dead time correction is used to eliminate the systematic error in quantifying the activity of an X-ray pulse in a sample and derive the real count rate. We report APXS data and initial results during the first and second lunar days for the Yutu rover. In this study, we analyze the data from the calibration target and lunar soil on the first lunar day. Seven major elements, including Mg, Al, Si, K, Ca, Ti and Fe, have been identified. Comparing the peak areas and ratios of calibration basalt and lunar soil the landing site was found to be depleted in K, and have lower Mg and Al but higher Ca, Ti, and Fe. In the future,we will obtain the elemental concentrations of lunar soil at the Chang'e-3 landing site using APXS data.  相似文献   

9.
In the Chang'e-3 mission, the Active Particle-induced X-ray Spectrometer(APXS) on the Yutu rover is used to analyze the chemical composition of lunar soil and rock samples. APXS data are only valid are only if the sensor head gets close to the target and integration time lasts long enough. Therefore, working distance and integration time are the dominant factors that affect APXS results. This study confirms the ability of APXS to detect elements and investigates the effects of distance and time on the measurements. We make use of a backup APXS instrument to determine the chemical composition of both powder and bulk samples under the conditions of different working distances and integration times. The results indicate that APXS can detect seven major elements, including Mg, Al, Si, K, Ca, Ti and Fe under the condition that the working distance is less than 30 mm and having an integration time of 30 min. The statistical deviation is smaller than 15%. This demonstrates the instrument's ability to detect major elements in the sample. Our measurements also indicate the increase of integration time could reduce the measurement error of peak area, which is useful for detecting the elements Mg, Al and Si. However, an increase in working distance can result in larger errors in measurement, which significantly affects the detection of the element Mg.  相似文献   

10.
The SMART-1 mission has recently arrived at the Moon. Its payload includes D-CIXS, a compact X-ray spectrometer. SMART-1 is a technology evaluation mission, and D-CIXS is the first of a new generation of planetary X-ray spectrometers. Novel technologies enable new capabilities for measuring the fluorescent yield of a planetary surface or atmosphere which is illuminated by solar X-rays. During the extended SMART-1 cruise phase, observations of the Earth showed strong argon emission, providing a good source for calibration and demonstrating the potential of the technique. At the Moon, our initial observations over Mare Crisium show a first unambiguous remote sensing of calcium in the lunar regolith. Data obtained are broadly consistent with current understanding of mare and highland composition. Ground truth is provided by the returned Luna 20 and 24 sample sets.  相似文献   

11.
The D-CIXS X-ray spectrometer on ESA's SMART-1 mission will provide the first global coverage of the lunar surface in X-rays, providing absolute measurements of elemental abundances. The instrument will be able to detect elemental Fe, Mg, Al and Si under normal solar conditions and several other elements during solar flare events. These data will allow for advances in several areas of lunar science, including an improved estimate of the bulk composition of the Moon, detailed observations of the lateral and vertical nature of the crust, chemical observations of the maria, investigations into the lunar regolith, and mapping of potential lunar resources. In combination with information to be obtained by the other instruments on SMART-1 and the data already provided by the Clementine and Lunar Prospector missions, this information will allow for a more detailed look at some of the fundamental questions that remain regarding the origin and evolution of the Moon.  相似文献   

12.
Biological interest in the exploration of Mars is briefly described as is the biological experiments package to be flown as part of the Viking 1975 lander payload.  相似文献   

13.
In conjunction with the lander imaging system, a permanent magnet array will be used to detect the presence, color, relative abundance, and possibly the composition of magnetic particles in Martian surface material. The data obtained will be used as clues to the composition and degree of differentiation of the solid planet, and the extent of surface-atmosphere interaction.  相似文献   

14.
The process of development and calibration for the first Moon-based extreme ultraviolet(EUV) camera to observe Earth's plasmasphere is introduced and the design, test and calibration results are presented. The EUV camera is composed of a multilayer film mirror, a thin film filter, a photon-counting imaging detector, a mechanism that can adjust the direction in two dimensions, a protective cover, an electronic unit and a thermal control unit. The center wavelength of the EUV camera is 30.2 nm with a bandwidth of 4.6 nm. The field of view is 14.7° with an angular resolution of 0.08°, and the sensitivity of the camera is 0.11 count s-1Rayleigh-1. The geometric calibration, the absolute photometric calibration and the relative photometric calibration are carried out under different temperatures before launch to obtain a matrix that can correct geometric distortion and a matrix for relative photometric correction,which are used for in-orbit correction of the images to ensure their accuracy.  相似文献   

15.
Chang'e-3(CE-3) landed on the Mare Imbrium basin in the east part of Sinus Iridum(19.51°W, 44.12°N), which was China's first soft landing on the Moon and it started collecting data on the lunar surface environment. To better understand the environment of this region, this paper utilizes the available high-resolution topography data, image data and geological data to carry out a detailed analysis and research on the area surrounding the landing site(Sinus Iridum and 45 km×70 km of the landing area)as well as on the topography, landform, geology and lunar dust of the area surrounding the landing site. A general topographic analysis of the surrounding area is based on a digital elevation model and digital elevation model data acquired by Chang'e-2 that have high resolution; the geology analysis is based on lunar geological data published by USGS; the study on topographic factors and distribution of craters and rocks in the surrounding area covering 4 km×4 km or even smaller is based on images from the CE-3 landing camera and images from the topographic camera; an analysis is done of the effect of the CE-3 engine plume on the lunar surface by comparing images before and after the landing using data from the landing camera. A comprehensive analysis of the results shows that the landing site and its surrounding area are identified as typical lunar mare with flat topography. They are suitable for maneuvers by the rover,and are rich in geological phenomena and scientific targets, making it an ideal site for exploration.  相似文献   

16.
The MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission will send the first spacecraft to orbit the planet Mercury. A miniaturized set of seven instruments, along with the spacecraft telecommunications system, provide the means of achieving the scientific objectives that motivate the mission. The payload includes a combined wide- and narrow-angle imaging system; γ-ray, neutron, and X-ray spectrometers for remote geochemical sensing; a vector magnetometer; a laser altimeter; a combined ultraviolet-visible and visible-infrared spectrometer to detect atmospheric species and map mineralogical absorption features; and an energetic particle and plasma spectrometer to characterize ionized species in the magnetosphere.  相似文献   

17.
Mercury holds answers to several critical questions regarding the formation and evolution of the terrestrial planets. These questions include the origin of Mercury's anomalously high ratio of metal to silicate and its implications for planetary accretion processes, the nature of Mercury's geological evolution and interior cooling history, the mechanism of global magnetic field generation, the state of Mercury's core, and the processes controlling volatile species in Mercury's polar deposits, exosphere, and magnetosphere. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission has been designed to fly by and orbit Mercury to address all of these key questions. After launch by a Delta 2925H-9.5, two flybys of Venus, and two flybys of Mercury, orbit insertion is accomplished at the third Mercury encounter. The instrument payload includes a dual imaging system for wide and narrow fields-of-view, monochrome and color imaging, and stereo; X-ray and combined gamma-ray and neutron spectrometers for surface chemical mapping; a magnetometer; a laser altimeter; a combined ultraviolet–visible and visible-near-infrared spectrometer to survey both exospheric species and surface mineralogy; and an energetic particle and plasma spectrometer to sample charged species in the magnetosphere. During the flybys of Mercury, regions unexplored by Mariner 10 will be seen for the first time, and new data will be gathered on Mercury's exosphere, magnetosphere, and surface composition. During the orbital phase of the mission, one Earth year in duration, MESSENGER will complete global mapping and the detailed characterization of the exosphere, magnetosphere, surface, and interior.  相似文献   

18.
Amati  L.  O’Brien  P.T.  Götz  D.  Bozzo  E.  Santangelo  A.  Tanvir  N.  Frontera  F.  Mereghetti  S.  Osborne  J. P.  Blain  A.  Basa  S.  Branchesi  M.  Burderi  L.  Caballero-García  M.  Castro-Tirado  A. J.  Christensen  L.  Ciolfi  R.  De Rosa  A.  Doroshenko  V.  Ferrara  A.  Ghirlanda  G.  Hanlon  L.  Heddermann  P.  Hutchinson  I.  Labanti  C.  Le Floch  E.  Lerman  H.  Paltani  S.  Reglero  V.  Rezzolla  L.  Rosati  P.  Salvaterra  R.  Stratta  G.  Tenzer  C. 《Experimental Astronomy》2021,52(3):183-218
Experimental Astronomy - THESEUS, one of the two space mission concepts being studied by ESA as candidates for next M5 mission within its Comsic Vision programme, aims at fully exploiting Gamma-Ray...  相似文献   

19.
To improve our understanding of the formation and evolution of the Moon,one of the payloads onboard the Chang'e-3(CE-3) rover is Lunar Penetrating Radar(LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsurface to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the configuration of regolith where the thickness of regolith varies from about 4 m to 6 m.In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.  相似文献   

20.
Of the four spacecraft that the Viking Project put into operation at Mars in the summer of 1976, one continues to acquire data periodically. The missions of the two orbiters were terminated by the depletion of their attitude-control gas: Orbiter 2 in July 1978 and Orbiter 1 in August 1980. Lander 2 was shut down in April 1980 because of degradation of its batteries. Lander 1 is programmed to continue acquiring a modest number of imaging, meteorology, and ranging data periodically until December 1994. During its final year Orbiter 1 continued to produce excellent data from its full complement of instruments—two cameras, two infrared instruments (thermal mapper and water vapor detector), and the radio subsystem. The major emphasis was on photography, with 10,000 images being acquired. These included two very large swaths of high-resolution contiguous coverage of the Martian surface and the completion of the moderate-resolution mapping of nearly the entire surface, as well as miscellaneous other observations. The majority of these images has not been processed and examined, but the others have revealed many previously unobserved features and have greatly enhanced the base for a geological understanding of the planet. The history of Viking mission operations is brought up to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号