首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The establishment of a lunar control network is one of the core tasks in selenodesy, in which defining an absolute control point on the Moon is the most important step. However, up to now, the number of absolute control points has been very sparse. These absolute control points have mainly been lunar laser ranging retroreflectors, whose geographical location can be observed by observations on Earth and also identified in high resolution lunar satellite images. The Chang'e-3(CE-3) probe successfully landed on the Moon, and its geographical location has been monitored by an observing station on Earth. Since its positional accuracy is expected to reach the meter level, the CE-3 landing site can become a new high precision absolute control point. We use a sequence of images taken from the landing camera, as well as satellite images taken by CE-1 and CE-2, to identify the location of the CE-3 lander. With its geographical location known, the CE-3 landing site can be established as a new absolute control point, which will effectively expand the current area of the lunar absolute control network by 22%, and can greatly facilitate future research in the field of lunar surveying and mapping, as well as selenodesy.  相似文献   

2.
The design of a lunar landing trajectory which satisfies certain constraints is considered and discussed. The constraints are of two kinds, kinetic constraints, which deal with the relative positions among the Sun, the Moon, the Earth, the spacecraft and tracking stations, and dynamic constraints, which deal with the orbital motion of the spacecraft. After a discussion of the characteristics of lunar flight trajectory, a method of designing standard flight trajectory is suggested that satisfies the constraints. This method is applied to the Chinese lunar landing flight and to the pre-design of the orbit of a lunar satellite.  相似文献   

3.
Lunar Penetrating Radar(LPR) onboard the rover that is part of the Chang'e-3(CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetration depth and resolution of LPR are related to the scientific objectives of this mission,a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm.  相似文献   

4.
The Chang'e-3 panoramic camera, which is composed of two cameras with identical functions, performances and interfaces, is installed on the lunar rover mast. It can acquire 3D images of the lunar surface based on the principle of binocular stereo vision. By rotating and pitching the mast, it can take several photographs of the patrol area. After stitching these images, panoramic images of the scenes will be obtained.Thus the topography and geomorphology of the patrol area and the impact crater, as well as the geological structure of the lunar surface, will be analyzed and studied.In addition, it can take color photographs of the lander using the Bayer color coding principle. It can observe the working status of the lander by switching between static image mode and dynamic video mode with automatic exposure time. The focal length of the lens on the panoramic camera is 50 mm and the field of view is 19.7?umination and viewing conditions, the largest signal-to-no×14.5?.Under the best illise ratio of the panoramic camera is 44 d B. Its static modulation transfer function is 0.33. A large number of ground testing experiments and on-orbit imaging results show that the functional interface of the panoramic camera works normally. The image quality of the panoramic camera is satisfactory. All the performance parameters of the panoramic camera satisfy the design requirements.  相似文献   

5.
We performed the first global survey of lunar regolith depths using Lunar Reconnaissance Orbiter Camera (LROC) data and the crater morphology method for determining regolith depth. We find that on both the lunar farside and in the nearside, non-mare regions, the regolith depth is twice as deep as it is within the lunar maria. Our data compare favorably with previous studies where such data exist. We also find that regolith depth correlates well with density of large craters (>20 km diameter). This result is consistent with the gradual formation of regolith by rock fracture during impact events.  相似文献   

6.
Side-looking spacecraft radar imagery has thus far been produced only from an orbit around the Moon. This was a part of the Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 mission in December, 1972. This paper reports results of a radargrammetric evaluation of overlapping Apollo 17 synthetic aperture radar images (wavelength 2 m). The potential to map from single images and to reconstruct 3D stereoscopic models is studied. The relative height accuracy achieved is about ± 100 m and is thus competitive with that obtained with the vidicon camera that is presently used for planetary exploration.NAS-NRC Resident Research Associate.  相似文献   

7.
The volume FeO and TiO_2 abundances(FTAs) of lunar regolith can be more important for understanding the geological evolution of the Moon compared to the optical and gamma-ray results. In this paper, the volume FTAs are retrieved with microwave sounder(CELMS) data from the Chang'E-2 satellite using the back propagation neural network(BPNN) method. Firstly, a three-layered BPNN network with five-dimensional input is constructed by taking nonlinearity into account. Then, the brightness temperature(TB) and surface slope are set as the inputs and the volume FTAs are set as the outputs of the BPNN network.Thereafter, the BPNN network is trained with the corresponding parameters collected from Apollo, Luna,and Surveyor missions. Finally, the volume FTAs are retrieved with the trained BPNN network using the four-channel TBderived from the CELMS data and the surface slope estimated from Lunar Orbiter Laser Altimeter(LOLA) data. The rationality of the retrieved FTAs is verified by comparing with the Clementine UV-VIS results and Lunar Prospector(LP) GRS results. The retrieved volume FTAs enable us to re-evaluate the geological features of the lunar surface. Several important results are as follows. Firstly, very-low-Ti(<1.5 wt.%) basalts are the most spatially abundant, and the surfaces with TiO_2> 5 wt.% constitute less than 10% of the maria. Also, two linear relationships occur between the FeO abundance(FA) and the TiO_2 abundance before and after the threshold, 16 wt.% for FA. Secondly, a new perspective on mare volcanism is derived with the volume FTAs in several important mare basins, although this conclusion should be verified with more sources of data. Thirdly, FTAs in the lunar regolith change with depth to the uppermost surface,and the change is complex over the lunar surface. Finally, the distribution of volume FTAs hints that the highlands crust is probably homogeneous, at least in terms of the microwave thermophysical parameters.  相似文献   

8.
Lunar images acquired at non-zero phase angles show brightness variations caused by both albedo heterogeneities and local topographic slopes of the surface. To distinguish between these two factors, altimetry measurements or photoclinometry data can be used. The distinction is especially important for imagery of phase-function parameters of the Moon. The imagery is a new tool that can be used to study structural anomalies of the lunar surface. To illustrate the removal of the topographic effects from photometric images, we used Earth-based telescopic observations, altimetry measurements carried out with the Kaguya (JAXA) LALT instrument, and a new photoclinometry technique that includes analysis of several images of the same scenes acquired at different phase angles. Using this technique we have mapped the longitudinal component of lunar topography slopes (the component measured along the lines of constant latitude). We have found good correlations when comparing our map with the corresponding data from Kaguya altimetry. The removal of the topographic surface properties allows for the study of the phase-function parameters of the lunar surface, not only for flat mare regions, but for highlands as well.  相似文献   

9.
Exploration activities on the lunar surface will require precise knowledge of the position of a robotic or manned vehicle. This paper discusses the use of radio beacons as method to determine the position of a mobile unit on the surface. Previous concepts consider the installation of such equipment by the robot itself. A novel idea is discussed here, namely to use miniaturized radio beacons which are deployed (released) during the descent of the lander on the surface. This idea has three major advantages compared to previous proposals: (i) it avoids the time costly and energy consuming installation of the equipment by a rover. (ii) The impact velocities of the probes are in reasonable range since the probes are deployed at low altitude from the main lander that approaches its final landing site. (iii) The probes can take reconnaissance pictures during their free-fall to the surface. This method will therefore deliver charts of the proximity of the landing area with higher resolution than those done by orbital means. Such information will enable scientists and mission operators to precisely plan robotic excursions (and later Extra Vehicular Activity) through the identification of hazardous areas and spots of interest.The paper will study the feasibility of this system from different aspects. The first section will outline the application scenario and the potential outcome of such a system for the coming phase of lunar exploration. A technological readiness review was done to evaluate if the payload instrumentation for these high velocity impacting probes is available. The second section presents the simulation of the impact process of a preliminary probe model in nonlinear transient dynamic finite element analysis using the Lagrangian hydrocode LS-DYNA. The purpose of this simulation was to evaluate if the beacon is able to communicate with the mobile unit even when buried into the soil.The integration of this payload into coming lunar missions will contribute to the international efforts of lunar exploration with a landing site ad hoc navigation system for robotic or manned excursions.  相似文献   

10.
The Extreme Ultraviolet Camera(EUVC) onboard the Chang'e-3(CE-3)lander is used to observe the structure and dynamics of Earth's plasmasphere from the Moon. By detecting the resonance line emission of helium ions(He+) at 30.4 nm, the EUVC images the entire plasmasphere with a time resolution of 10 min and a spatial resolution of about 0.1 Earth radius(RE) in a single frame. We first present details about the data processing from EUVC and the data acquisition in the commissioning phase, and then report some initial results, which reflect the basic features of the plasmasphere well. The photon count and emission intensity of EUVC are consistent with previous observations and models, which indicate that the EUVC works normally and can provide high quality data for future studies.  相似文献   

11.
The American Lunar Reconnaissance Orbiter spacecraft acquired high-resolution images of the landing sites of the Apollo manned spaceships and the Luna automatic space probes. In the images taken with the LROC Narrow-Angle Camera, the traces of anthropogenic influence on the lunar surface are seen in these places. However, such traces are not always noticeable sufficiently well, since they are masked by inhomogeneities in the brightness of the examined surface region caused by its topographic features and albedo variations. To increase the potential of identifying the disturbances of the initial structure of the lunar surface, the data should be analyzed with so-called phase-ratio imaging. Its essence is that the ratio of two coinciding images of the same surface region obtained at different phase angles is calculated. This method was applied to the analysis of the landing site of the Soviet Luna-17 space probe that transported the Lunokhod-1 rover to the lunar surface. The structural disturbance caused by the impact of jet flows from the probe’s engines and the tracks of the Lunokhod-1 wheels, which are faintly discernible in the usual images, has been detected.  相似文献   

12.
The Huygens probe returned scientific measurements from the atmosphere and surface of Titan on 14 January 2005. Knowledge of the trajectory of Huygens is necessary for scientific analysis of those measurements. We use measurements from the Huygens Atmospheric Structure Instrument (HASI) to reconstruct the trajectory of Huygens during its mission. The HASI Accelerometer subsystem measured the axial acceleration of the probe with errors of 3E−6 m s−2, the most accurate measurements ever made by an atmospheric structure instrument on another planetary body. The atmosphere was detected at an altitude of 1498 km. Measurements of the normal acceleration of the probe, which are important for determining the probe's attitude during hypersonic entry, were significantly less accurate and limited by transverse sensitivity of the piezo sensors. Peak acceleration of 121.2 m s−2 occurred at 234.9 km altitude. The parachute deployment sequence started at 157.1 km and a speed of 342.1 m s−1. Direct measurements of pressure and temperature began shortly afterwards. The measured accelerations and equations of motion have been used to reconstruct the trajectory prior to parachute deployment. Measured pressures and temperatures, together with the equation of hydrostatic equilibrium and the equation of state, have been used to reconstruct the trajectory after parachute deployment. Uncertainties in the entry state of Huygens at the top of the atmosphere are significant, but can be reduced by requiring that the trajectory and atmospheric properties be continuous at parachute deployment.  相似文献   

13.
The potential effect of the future Russian lunar laser ranging system (LLRS) on the accuracy of lunar ephemerides is discussed. In addition to the LLRS in Altai, several other observatories suitable for the LLRS installation are considered. The variation of accuracy of lunar ephemerides in the process of commissioning of new LLRS stations is estimated by mathematical modeling. It is demonstrated that the error in the determination of certain lunar ephemeris parameters may be reduced by up to 16% after seven years of operation of the Altai LLRS with a nearly optimal observational program.  相似文献   

14.
Comparison of the Lunar Radar Sounder (LRS) data to the Multiband Imager (MI) data is performed to identify the subsurface reflectors in Mare Serenitatis. The LRS is FM-CW radar (4–6 MHz) and the 2 MHz bandwidth leads to the range resolution of 75 m in a vacuum, whereas the sampling interval in the flight direction is about 75 m when an altitude of the spacecraft with polar orbit is nominal (100 km). Horizontally continuous reflectors were clearly detected by LRS in limited areas that consist of about 9% of the whole maria. The typical depth of the reflectors is estimated to be a few hundred meters. Layered structures of mare basalts are also discernible on some crater walls in the MI data of the visible bands (VIS). The VIS range has nine wavelengths of 415, 750, 900, 950, and 1000 nm, and their spatial resolution is 20 m/pixel at a nominal altitude. The stratigraphies around Bessel and Bessel-H craters in Mare Serenitatis are examined in this paper. It was revealed that the subsurface reflectors lie on the boundaries between basalt units with different chemical compositions. In addition, model calculations using the simplified radar equation indicate that the subsurface reflectors are not compositional interfaces but layer boundaries with a high-porosity contrast. These results suggest that the detected reflectors in Mare Serenitatis are regolith accumulated during so long hiatus of mare volcanisms enough for chemical composition of magma to change, not instantaneously. Therefore combination of the LRS and MI data has a potential to reveal characteristics of a series of magmatism forming each lithostratigraphic unit in Mare Serenitatis and other maria.  相似文献   

15.
16.
Micron and submicron-sized dust particles can be lifted from the lunar surface due to continual micrometeoroid bombardment and electrostatic charging. The characteristics of these dust populations are of scientific interest and engineering importance for the design of future equipment to operate on the lunar surface. The mobilized grains are expected to have a low velocity, which makes their detection difficult by traditional methods that are based on momentum transfer or impact energy. We describe a newly developed instrument concept, the Electrostatic Lunar Dust Analyzer (ELDA), which utilizes the charge on the dust for detection and analysis. ELDA consists of an array of wire electrodes combined with an electrostatic deflection field region, and measures the mass, charge, and velocity vector of individual dust grains. The first basic prototype of the ELDA instrument has been constructed, tested and characterized in the laboratory. The instrument is set up to measure over a velocity range 1–100 m/s and is sensitive to particles from an approximate mass range from 2×10−16 to 10−11 kg, depending on the charge state and velocity.  相似文献   

17.
After the Beagle-2 lander of the Mars Express mission comes to rest on the surface of Isidis Planitia in late December 2003 to carry out a range of geochemistry and exobiology experiments, there will be considerable interest in determining its exact location. This work considers the feasibility of identifying topographic features seen in the Mars Global Surveyor MOLA dataset in images of the horizon returned by the lander, and the probability of observing lesser features identifiable in orbital imagery. By taking bearings from such features, and attempting to match the configuration back to the available data, it may be possible to determine the spacecraft's position with high precision. Since the MOLA data is fairly coarse compared to the area of the landing ellipse, the range of visibility and likelihood of observation of each of the resolved craters in the area is considered. For the more numerous smaller craters and many small knobs a probabilistic view is taken.  相似文献   

18.
19.
Chang'e-3(CE-3) landed on the Mare Imbrium basin in the east part of Sinus Iridum(19.51°W, 44.12°N), which was China's first soft landing on the Moon and it started collecting data on the lunar surface environment. To better understand the environment of this region, this paper utilizes the available high-resolution topography data, image data and geological data to carry out a detailed analysis and research on the area surrounding the landing site(Sinus Iridum and 45 km×70 km of the landing area)as well as on the topography, landform, geology and lunar dust of the area surrounding the landing site. A general topographic analysis of the surrounding area is based on a digital elevation model and digital elevation model data acquired by Chang'e-2 that have high resolution; the geology analysis is based on lunar geological data published by USGS; the study on topographic factors and distribution of craters and rocks in the surrounding area covering 4 km×4 km or even smaller is based on images from the CE-3 landing camera and images from the topographic camera; an analysis is done of the effect of the CE-3 engine plume on the lunar surface by comparing images before and after the landing using data from the landing camera. A comprehensive analysis of the results shows that the landing site and its surrounding area are identified as typical lunar mare with flat topography. They are suitable for maneuvers by the rover,and are rich in geological phenomena and scientific targets, making it an ideal site for exploration.  相似文献   

20.
About 60,000 observations of lunar occultations made during 1955–1980 are analysed using recently-developed semi-analytical solution ELP2000-82 for the Moon's position in order to determine the constants in the lunar theory and to investigate the tidal term in the Moon's mean longitude and the motions of the perigee and node of the lunar orbit. The equinox correction and systematic correction to the fundamental star catalogue and the correction to the datum of the lunar-profile in Watts' charts are also investigated. It is confirmed that the occultation observations do not have inconsistent tidal term with the modern observations and the observed mean motions of the perigee and node coincide with the theoretical ones within the error of observations. Some of the values of the constants in the lunar theory and the equinox correction to the fundamental catalogue FK5 obtained in this paper are significantly different from the values obtained using the Brown's theory. The reason of the difference is almost attributed to the deficiencies in the Brown's theory. The obtained correction to the datum of the lunar-profile in Watts' charts is almost consistent with the results by earlier investigators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号