首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fiber – or intermediate drift – bursts are a continuum fine structure in some complex solar radio events. We present the analysis of such bursts in the X17 flare on 28 Oct. 2003. Based on the whistler wave model of fiber bursts we derive the 3D magnetic field structures that carry the radio sources in different stages of the event and obtain insight into the energy release evolution in the main flare phase, the related paths of nonthermal particle propagation in the corona, and the involved magnetic field structures. Additionally, we test the whistler wave model of fiber bursts for the meter and the decimeter wave range. Radio spectral data (Astrophysikalisches Institut Potsdam, Astronomical Observatory Ond?ejov) show a continuum with fibers for ≈?6 min during the main flare phase. Radio imaging data (Nançay Radio Heliograph) yield source centroid positions of the fibers at three frequencies in the spectrometer band. We compare the radio positions with the potential coronal magnetic field extrapolated from SOHO/MDI data. Given the detected source site configuration and evolution, and the change of the fiber burst frequency range with time, we can also extract those coronal flux tubes where the high-frequency fiber bursts are situated even without decimeter imaging data. To this aim we use a kinetic simulation of whistler wave growth in sample flux tubes modeled by selected potential field lines and a barometric density model. The whistler wave model of fiber bursts accurately explains the observations on 28 Oct. 2003. A laterally extended system of low coronal loops is found to guide the whistler waves. It connects several neighboring active regions including the flaring AR 10486. For varying source sites the fiber bursts are emitted at the fundamental mode of the plasma frequency over the whole range (1200?–?300 MHz). The present event can be understood without assuming two different generation mechanisms for meter and decimeter wave fiber bursts. It gives new insight into particle acceleration and propagation in the low flare and post-CME corona.  相似文献   

2.
A sample of 36 S-component sources observed by the radio telescope RATAN-600 was compared with calculations of gyromagnetic emission and bremsstrahlung based on recent sunspot models. The diagnostic possibilities of the spectral distributions in the radio flux, the degree of polarization, and the source sizes for the estimation of magnetic scale heights and other source parameters were checked by different methods.Depending on the magnetic field structure, the observations show different types of polarization spectra. Most regular spectra and highest values of the degree of polarization were observed from sources above the leading part of the associated spot group. Magnetic scale heights were found to be intrinsically associated with the source size of the gyromagnetic emission.The flare production rate of active regions appears to be related to their S-component flux and magnetic scale heights.  相似文献   

3.
The source positions of solar radio bursts of spectral types I, III(U) and III(J) and V observed by the Culgoora radioheliograph are found to lie almost radially above soft X-ray loops on pictures taken by the S-056 telescope aboard Skylab. The radio source positions and the X-ray loops occur near magnetic loops on computed potential field maps. However, the magnetic induction required to explain the radio observations is much greater than the computed potential field value at that height. Dense current-carrying magnetic flux tubes emanating from active regions on the Sun and extending to 1.5R above the photosphere provide a satisfactory model for the radio bursts.  相似文献   

4.
The expansion rate of a plasma irregularity into the ambient atmosphere is controlled by ambipolar diffusion for heights which correspond to collision dominated conditions. For heights greater than about 95 km, theory predicts that the plasma diffusion rate depends upon the geomagnetic field. However, little experimental evidence is available on this effect. The present work is the first report in which observations of under-dense radio-meteors have revealed the presence of a geomagnetic control.  相似文献   

5.
A method is presented for the direct measurement of the heights of the radio emission of solar active regions when they are located at the limb in order to reconstruct the vertical structure of the magnetic field in solar active regions. The method involves an analysis of radio source positions in the scans based on high frequency resolution one-dimensional centimeter-wave measurements performed on the RATAN-600 radio telescope. Radio sources are difficult to identify at many frequencies when observed at the limb at zero position angle because of abrupt signal variations at the solar limb. To eliminate edge effects on the scan, special observing periods are used (near vernal and autumnal equinoxes), when the source at the limb is located far from the scan edge because of the large position angle of the Sun. As a result of these observations, the spectra of relative heights are constructed for a number of sources for the period from 2007 through 2012. Source heights are shown to generally increase with wavelength. The height difference between the 5 and 2 cm emission is equal to 5.2 ± 2.0 Mm, and the corresponding height difference between the 8 and 2 cm emission is equal to 9.6 ± 3.0 Mm. It is shown that such characteristics can be obtained for a field generated by a dipole submerged under the photosphere at a depth of 17 Mm irrespective of the possible reduction of relative altitudes to absolute altitudes.  相似文献   

6.
We present coronal density profiles derived from low-frequency (80?–?240 MHz) imaging of three Type III solar radio bursts observed at the limb by the Murchison Widefield Array (MWA). Each event is associated with a white-light streamer at larger heights and is plausibly associated with thin extreme-ultraviolet rays at lower heights. Assuming harmonic plasma emission, we find average electron densities of 1.8\(\times10^{8}\) cm?3 down to 0.20\(\times10^{8}\) cm?3 at heights of 1.3 to 1.9 R. These values represent approximately 2.4?–?5.4× enhancements over canonical background levels and are comparable to the highest streamer densities obtained from data at other wavelengths. Assuming fundamental emission instead would increase the densities by a factor of four. High densities inferred from Type III source heights can be explained by assuming that the exciting electron beams travel along overdense fibers or by radio propagation effects that may cause a source to appear at a larger height than the true emission site. We review the arguments for both scenarios in light of recent results. We compare the extent of the quiescent corona to model predictions to estimate the impact of propagation effects, which we conclude can only partially explain the apparent density enhancements. Finally, we use the time- and frequency-varying source positions to estimate electron beam speeds of between 0.24 and 0.60 c.  相似文献   

7.
本文作者用澳大利亚Parkes64m射电望远镜观测了OH17.7-2.0的拱星OH脉泽辐射。在观测中共测得了三个峰,其中一个峰是我们新发现的弱源,两个峰是过去发现的强源。用二维Gaussian拟合我们发现强源位置与一个IRAS点源位置相一致,弱源位置在这个IRAS点源位置的西南方。强源的两个峰的速度位置和峰值流量密度都是比较稳定的。  相似文献   

8.
The weak thermal emission from the largest minor planets can be detected and measured at all points around their orbits at microwave frequencies using the Very Large Array (VLA). Position determinations of astrometric quality have been obtained, and flux measurements have provided size estimates. When enough precise positional observations have been accumulated, the orbits of the minor planets and the Earth can be determined. This will allow the equinox to be located within the radio reference frame, providing a truly fundamental coordinate system for radio source positions. It will also provide a means of relating the optical and radio (quasar) coordinate systems.The National Radio Astronomy Observatory is operated by Associated Universities, Incorporated, under contract with the National Science Foundation.  相似文献   

9.
This paper summarizes the analysis of the radio observations of the solar eclipse at wavelengths 3.2, 11.1 and 21 cm in Xinjiang, on 1968 Sept. 22. From the observations, we have determined the flux densities, angular diameters and heights of the localized radio sources on the solar disk, circumstances of the radio eclipse, equivalent radius of the radio Sun and certain features of a small radio burst that occurred during the eclipse. We have also investigated the correlation between the flux density of the localized sources and the activity of the active regions, as measured by the integrated brightness of plages and the sunspot area.  相似文献   

10.
We present the long-term light curve of the radio source J1603+1105 and results of the study of its variability on timescales from several days to several weeks. From 2007, a flare with the maximum in 2010 was observed for the object that earlier showed no significant variations of flux density. Three flares with a successively decreasing amplitude were detected at an active phase in the long-term light curve. The characteristic time of the first one was 2.5 yrs. In five sets of daily observations of 95 to 120 days, the flux density variability on scales from 9 to 32 days in 2011, 2012, 2015, and 2016 was detected; in 2015 it was detected at three frequencies simultaneously. In 2011, the variability was found at a single frequency of 4.8 GHz; in 2012—at two frequencies, 4.8 and 7.7 GHz; in 2015—at 4.6, 8.2, and 11.2 GHz.We present instant spectra of the source at different flare phases showing that the dynamics of the flare development is consistent with the model, in which the variability is the result of the shock wave evolution in the radio source jet.  相似文献   

11.
This work investigates the spatial relation between coronal X-ray sources and coherent radio emissions, both generally thought to be signatures of particle acceleration. Two limb events were selected during which the radio emission was well correlated in time with hard X-rays. The radio emissions were of the type of decimetric pulsations as determined from the spectrogram observed by Phoenix-2 of ETH Zurich. The radio positions were measured from observations with the Nançay Radioheliograph between 236 and 432 MHz and compared to the position of the coronal X-ray source imaged with RHESSI. The radio pulsations originated at least 30?–?240 Mm above the coronal hard X-ray source. The altitude of the radio emission increases generally with lower frequency. The average positions at different frequencies are on a line pointing approximately to the coronal hard X-ray source. Thus, the pulsations cannot be caused by electrons trapped in the flare loops, but are consistent with emission from a current sheet above the coronal source.  相似文献   

12.
Three-dimensional numerical simulations have been used to study the scattering of a surface-gravity wave packet by vertical magnetic-flux tubes, with radii from 200 km to 3 Mm, embedded in stratified polytropic atmosphere. The scattered wave has been found to consist primarily of m=0 (axisymmetric) and m=1 modes. The ratio of the amplitude of these two modes was found to be strongly dependent on the radius of the flux tube. The kink mode is the dominant mode excited in tubes with a small radius, while the sausage mode is dominant for large tubes. Simulations of this type provide a simple, efficient, and robust way to start to understand the seismic signature of flux tubes, which have recently begun to be observed.  相似文献   

13.
We derive the magnetic helicity for configurations formed by flux tubes contained fully or only partially in the spatial domain considered (called closed and open configurations, respectively). In both cases, magnetic helicity is computed as the sum of mutual helicity over all possible pairs of magnetic flux tubes weighted by their magnetic fluxes. We emphasize that these mutual helicities have properties which are not those of mutual inductances in classical circuit theory. For closed configurations, the mutual helicity of two closed flux tubes is their relative winding around each other (known as the Gauss linkage number). For open configurations, the magnetic helicity is derived directly from the geometry of the interlaced flux tubes so it can be computed without reference to a ground state (such as a potential field). We derive the explicit expression in the case of a planar and spherical boundary. The magnetic helicity has two parts. The first one is given only by the relative positions of the flux tubes on the boundary. It is the only part if all flux tubes are arch-shaped. The second part counts the integer number of turns each pair of flux tubes wind about each other. This provides a general method to compute the magnetic helicity with discrete or continuous distributions of magnetic field. The method sets closed and open configurations on an equal level within the same theoretical framework.  相似文献   

14.
The possibility of obtaining information about oscillation processes in magnetic flux tubes on the Sun by analyzing the undulating frequency drift of the zebra pattern in the dynamic spectrum of solar radio emission is discussed. It is shown that the oscillatory variation in the frequency of zebra stripes can be associated with fast magnetoacoustic (FMA) oscillations in a flux tube, which lead to oscillations in the magnetic field strength and electron number density. The October 25, 1994 event recorded by the radio spectrograph of the Astrophysical Institute Potsdam is used as an example to demonstrate the possibility of determining the parameters of FMA oscillations and the physical conditions in coronal magnetic loops from the observed zebra-pattern characteristics.  相似文献   

15.
We have estimated the proton injection flux from the nuclei of some typical extragalactic radio sources (EGRS). To do so, we have used measured values of radio luminosities from these sources and have assumed the proton-proton collision model as a source of relativistic electrons which give rise to radio emission. The estimated values of the proton flux is in fairly good agreement with theoretical estimates of cosmic-ray fluxes within the same range of energy. This lends support to the fact that the nuclei of EGRSs might be the site for the generation of primary cosmic rays.  相似文献   

16.
Close  R.M.  Parnell  C.E.  Mackay  D.H.  Priest  E.R. 《Solar physics》2003,212(2):251-275
The quiet-Sun photosphere consists of numerous magnetic flux fragments of both polarities that evolve with granular and supergranular flow fields. These concentrations give rise to a web of intermingled magnetic flux tubes which characterise the coronal magnetic field. Here, the nature of these flux tubes is studied. The photosphere is taken to be the source plane and each photospheric fragment is represented by a series of point sources. By analysing the potential field produced by these sources, it is found that the distribution of flux tube lengths obtained by (i) integrating forward from positive sources and (ii) tracing back from negative sources is highly dependent on the total flux imbalance within the region of interest. It is established that the relation between the footpoint separation of a flux tube and its height cannot be assumed to be linear. Where there is a significant imbalance of flux within a region, it is found that fragments of the dominant polarity will have noticeably more connections, on average, than the minority polarity fragments. Despite this difference, the flux from a single fragment of either polarity is typically divided such that (i) 60–70% connects to one opposite-polarity fragment, (ii) 25–30% goes to a further 1 to 2 opposite-polarity fragments, and (iii) any remaining flux may connect to as many as another 50 or more other opposite-polarity fragments. This is true regardless of any flux imbalance within the region. It is found that fragments connect preferentially to their nearest neighbours, with, on average, around 60–70% of flux closing down within 10 Mm of a typical fragment. Only 50% of the flux in a quiet region extends higher than 2.5 Mm above the solar surface and 5–10% extends higher than 25 Mm. The fragments that contribute to the field above this height cover a range of sizes, with even the smallest of fragments contributing to the field at heights of over 50 Mm.  相似文献   

17.
We present results of nonlinear, two-dimensional, numerical simulations of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of three to five minutes are studied, after horizontal and vertical oscillatory perturbations are applied to the equilibrium model. Spurious reflections of shock waves from the upper boundary are minimized by a special boundary condition. This has allowed us to increase the duration of the simulations and to make it long enough to perform a statistical analysis of oscillations. The simulations show that deep horizontal motions of the flux tube generate a slow (magnetic) mode and a surface mode. These modes are efficiently transformed into a slow (acoustic) mode in the v A<c S atmosphere. The slow (acoustic) mode propagates vertically along the field lines, forms shocks, and remains always within the flux tube. It might effectively deposit the energy of the driver into the chromosphere. When the driver oscillates with a high frequency, above the cutoff, nonlinear wave propagation occurs with the same dominant driver period at all heights. At low frequencies, below the cutoff, the dominant period of oscillations changes with height from that of the driver in the photosphere to its first harmonic (half period) in the chromosphere. Depending on the period and on the type of the driver, different shock patterns are observed.  相似文献   

18.
High-resolution MERLIN observations of a newly discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS data set. The MERLIN observations resolve four components in a characteristic quadruple-image configuration; the maximum image separation is 542 mas and the total flux density is 48 mJy at 5 GHz. A best-fitting lens model with a singular isothermal ellipsoid results in large errors in the image positions. A significantly improved fit is obtained after the addition of a shear component, suggesting that the lensing system is more complex and may consist of multiple deflectors. The integrated radio spectrum of the background source indicates that it is a gigahertz peaked spectrum source. It may therefore be possible to resolve structure within the radio images with deep VLBI observations and thus to constrain the lensing mass distribution better.  相似文献   

19.
Oscillations of magnetic flux tubes are of great importance as they contain information about the geometry and fine structure of the flux tubes. Here we derive and analytically solve in terms of Kummer’s functions the linear governing equations of wave propagation for sausage surface and body modes (m=0) of a magnetically twisted compressible flux tube embedded in a compressible uniformly magnetized plasma environment in cylindrical geometry. A general dispersion relation is obtained for such flux tubes. Numerical solutions for the phase velocity are obtained for a wide range of wavenumbers and for varying magnetic twist. The effect of magnetic twist on the period of oscillations of sausage surface modes for different values of the wavenumber and vertical magnetic field strength is calculated for representative photospheric and coronal conditions. These results generalize and extend previous studies of MHD waves obtained for incompressible or for compressible but nontwisted flux tubes. It is found that magnetic twist may change the period of sausage surface waves of the order of a few percent when compared to counterparts in straight nontwisted flux tubes. This information will be most relevant when high-resolution observations are used for diagnostic exploration of MHD wave guides in analogy to solar-interior studies by means of global eigenoscillations in helioseismology.  相似文献   

20.
A new sample of radio sources, with the designated name CENSORS (A Combined EIS–NVSS Survey Of Radio Sources), has been defined by combining the National Radio Astronomy Observatory Very Large Array Sky Survey (NVSS) at 1.4 GHz with the ESO Imaging Survey (EIS) Patch D, a 3° by 2° region of sky centred at RA     , Dec. −21°00'00' (J2000). New radio observations of 199 NVSS radio sources with NVSS flux densities   S 1.4 GHz > 7.8 mJy  are presented, and are compared with the EIS I -band imaging observations which reach a depth of   I ∼ 23  ; optical identifications are obtained for over two-thirds of the ∼150 confirmed radio sources within the EIS field. The radio sources have a median linear size of 6 arcsec, consistent with the trend for lower flux density radio sources to be less extended. Other radio source properties, such as the lobe flux density ratios, are consistent with those of brighter radio source samples. From the optical information, 30–40 per cent of the sources are expected to lie at redshifts   z ≳ 1.5  .
One of the key goals of this survey is to accurately determine the high-redshift evolution of the radio luminosity function. These radio sources are at the ideal flux density level to achieve this goal; at redshifts   z ∼ 2  they have luminosities which are around the break of the luminosity function and so provide a much more accurate census of the radio source population at those redshifts than the existing studies of extreme, high radio power sources. Other survey goals include investigating the dual-population unification schemes for radio sources, studying the radio luminosity dependence of the evolution of radio source environments, and understanding the radio power dependence of the K – z relation for radio galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号