首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despois  D. 《Earth, Moon, and Planets》1997,79(1-3):103-124
We present here a review of the radio observations of the remarkable comet Hale-Bopp C/1995 O1 in which most major radio astronomical facilities have been involved. These observations started in August 1995, soon after the discovery of the comet (it was then at ∼7 AU from the sun), and well before its perihelion on April 1st, 1997; they are still going on, hopefully up to end of 1998. Extended cartographies have been obtained using multibeam receivers and on-the-fly techniques. High spatial resolution (a few ″) has been achieved with interferometers. Submillimetric observations are playing an increasing role, and high resolution (R ∼ 106−107) spectroscopy of cometary lines is now performed from decimetric to submillimetric wavelengths. The number of species observed at radio wavelengths now reaches ∼28,when it was ∼14 for comet C/1996 B2 Hyakutake. Most of these species are parent molecules. However, ions have been observed for the first time at radio wavelengths, and their velocities measured. Several isotopic species (involving D,13C,34S,15N) have been sought, allowing isotopic enrichment determinations. The abundances of cometary molecules present many similarities and some differences with the abundances of interstellar molecules in regions where grain mantles are believed to be evaporated to the gas phase (hot cores, bipolar flows). They will be discussed for their implications on the origin of cometary ices and of comets themselves. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
“Water and related chemistry in the Solar System” is a Herschel Space Observatory Guaranteed-Time Key Programme. This project, approved by the European Space Agency, aims at determining the distribution, the evolution and the origin of water in Mars, the outer planets, Titan, Enceladus and the comets. It addresses the broad topic of water and its isotopologues in planetary and cometary atmospheres. The nature of cometary activity and the thermodynamics of cometary comae will be investigated by studying water excitation in a sample of comets. The D/H ratio, the key parameter for constraining the origin and evolution of Solar System species, will be measured for the first time in a Jupiter-family comet. A comparison with existing and new measurements of D/H in Oort-cloud comets will constrain the composition of pre-solar cometary grains and possibly the dynamics of the protosolar nebula. New measurements of D/H in giant planets, similarly constraining the composition of proto-planetary ices, will be obtained. The D/H and other isotopic ratios, diagnostic of Mars’ atmosphere evolution, will be accurately measured in H2O and CO. The role of water vapor in Mars’ atmospheric chemistry will be studied by monitoring vertical profiles of H2O and HDO and by searching for several other species (and CO and H2O isotopes). A detailed study of the source of water in the upper atmosphere of the Giant Planets and Titan will be performed. By monitoring the water abundance, vertical profile, and input fluxes in the various objects, and when possible with the help of mapping observations, we will discriminate between the possible sources of water in the outer planets (interplanetary dust particles, cometary impacts, and local sources). In addition to these inter-connected objectives, serendipitous searches will enhance our knowledge of the composition of planetary and cometary atmospheres.  相似文献   

3.
Understanding the origin of Martian methane will require numerous complementary measurements from both in situ and remote sensing investigations and laboratory work to correlate planetary surface geophysics with atmospheric dynamics and chemistry. Three instruments (Quadrupole Mass Spectrometer (QMS), Gas Chromatograph (GC) and Tunable Laser Spectrometer (TLS)) with sophisticated sample handling and processing capability make up the Sample Analysis at Mars (SAM) analytical chemistry suite on NASA’s 2011 Mars Science Laboratory (MSL) Mission. Leveraging off the SAM sample and gas processing capability that includes methane enrichment, TLS has unprecedented sensitivity for measuring absolute methane (parts-per-trillion), water, and carbon dioxide abundances in both the Martian atmosphere and evolved from heated soil samples. In concert with a wide variety of associated trace gases (e.g. SO2, H2S, NH3, higher hydrocarbons, organics, etc.) and other isotope ratios measured by SAM, TLS will focus on determining the absolute abundances of methane, water and carbon dioxide, and their isotope ratios: 13C/12C and D/H in methane; 13C/12C and 18O/17O/16O in carbon dioxide; and 18O/17O/16O and D/H in water. Measurements near the MSL landing site will be correlated with satellite (Mars Express, Mars 2016) and ground-based observations.  相似文献   

4.
《New Astronomy Reviews》2000,44(4-6):329-334
Heavy element abundances derived from high-quality ground-based and Hubble Space Telescope (HST) spectroscopic observations of low-metallicity blue compact galaxies (BCGs) with oxygen abundances 12+log O/H between 7.1 and 8.3 are discussed. None of the heavy element-to-oxygen abundance ratios studied here (C/O, N/O, Ne/O, Si/O, S/O, Ar/O, Fe/O) depend on oxygen abundance for BCGs with 12+log O/H≤7.6 (ZZ/20). This constancy implies that all these heavy elements have a primary origin and are produced by the same massive (M≥10 M) stars responsible for O production. The dispersion of the C/O and N/O ratios in these galaxies is found to be remarkably small, being only ±0.03 dex and ±0.02 dex respectively. This very small dispersion is strong evidence against any time-delayed production of C and primary N in the lowest-metallicity BCGs, and hence against production of these elements by intermediate-mass (3 MM≤9 M) stars at very low metallicities, as commonly thought.In higher metallicity BCGs (7.6<12+log O/H<8.2), the Ne/O, Si/O, S/O, Ar/O and Fe/O abundance ratios retain the same constant value they had at lower metallicities. By contrast, there is an increase of the C/O and N/O ratios along with their dispersions at a given O. We interpret this increase as due to the additional contribution of C and primary N production in intermediate-mass stars, on top of that by high-mass stars. BCGs show the same O/Fe overabundance with respect to the Sun (∼0.4 dex) as galactic halo stars, suggesting the same chemical enrichment history.  相似文献   

5.
Abstract– We present NanoSIMS four‐isotope S analyses of 24 comet Wild 2 dust impact residues in craters on aluminum foil C2037N returned by NASA’s Stardust mission. Except for one sample, all impact residues have normal S isotopic compositions within 2σ uncertainties of at least two S isotope ratios. This implies that most S‐rich Wild 2 dust impactors formed in the solar system. Instrumental isotope fractionation due to sample topography is the main contribution to our analytical uncertainty. One impact crater residue shows small anomalies of δ33S = ?57 ± 17‰, and δ34S = ?41 ± 17‰ (1σ uncertainties). Although this could be simply a statistical outlier or the fingerprint of a chemical isotope fractionation it is also possible that the observed anomaly results from the mixture of a cometary FeS particle with a small (150 nm diam.) presolar FeS supernova grain. This would translate into a presolar sulfide abundance of approximately 200 ppm.  相似文献   

6.
Abstract— One hundred forty-three carbon grains, ranging in size from 2 to 8 μm, from two chemical and physical separates from the Murchison CM2 chondrite, were analyzed by ion microprobe mass spectrometry for their C- and N-isotopic compositions. Both separates are enriched in the exotic noble gas component Ne-E(L). Ninety grains were also analyzed for their H and O contents and 118, for Si. Thirteen grains were analyzed by micro-sampling laser Raman spectroscopy. Round grains have large C-isotopic anomalies with 12C/13C ratios ranging from 7 to 4500 (terrestrial ratio = 89). Nitrogen in these grains is also anomalous but shows much smaller deviations from the terrestrial composition, 14N/15N ratios ranging from 193 to 680 (terrestrial ratio = 272). Spherulitic aggregates and non-round compact grains have normal C-isotopic ratios but 15N excesses (up to 35%). Raman spectra of the analyzed grains indicate varying degrees of crystalline disorder of graphite with estimated in-plane crystallite dimensions varying from 18 Å (highly disordered, similar to terrestrial kerogen) to ~750 Å (well-crystallized graphite). Element contents of H, O, and Si are correlated with one another, and H and O are probably present in the form of organic molecules. On the basis of morphology, the round grains fall into two groups: grains with smooth, shell-like surfaces (“onions”) and grains that appear to be dense aggregates of small scales (“cauliflowers”). “Onions” tend to have lower trace element contents, isotopically light C (12C/13C > 89) and a high degree of crystalline order, whereas “cauliflowers” have a larger spread in trace element contents and C-isotopic ratios (they range from isotopically light to heavy) but tend to have a low degree of crystalline order. However, these differences exist only on average, and no clear distinction can be made for individual grains. A few limited conclusions can be drawn about the astrophysical origin of the carbon grains of this study. The 15N excesses in spherulitic aggregates and non-round grains can be explained as the result of ion-molecule reactions in molecular clouds. The round grains, on the other hand, must have formed in stellar atmospheres (circumstellar grains). Grains with isotopically light C must have formed in stellar environments characterized by He-burning, either in the atmosphere of Wolf-Rayet stars during the WC phase or in the He-burning, 12C-rich zone of a massive star, ejected by a supernova explosion. Isotopically heavy C is produced by H-burning in the CNO cycle. Possible sources for grains with heavy C are carbon stars (AGB stars during the thermally pulsing phase) or novae, but the detailed distribution of 12C/13C ratios agree neither with the distribution observed in carbon stars nor with theoretical predictions for these two types of stellar sources.  相似文献   

7.
Bertsch  D. L.  Biswas  S.  Reames  D. V. 《Solar physics》1974,39(2):479-491
Observations of the proton, helium, (C, N, O) and Fe-group nuclei fluxes made during the large 4 August 1972 solar particle event are presented. The results show a small, but significant variation of the composition of multiply-charged nuclei as a function of energy in the energy region above 10 MeV nucleon–1. In particular, the He/(C, N, O) abundance ratio varies by a factor 2 between 10 and 50 MeV nucleon–1 and the Fe-group/(C, N, O) ratio suggests a similar variation. Abundance ratios from the 4 August 1972 event are compared as a function of energy with ratios measured in other solar events to show that several of the earlier results are consistent with an energy variation like that observed in August 1972, while certain other events must have had a substantially different dependence of composition on energy. At energies 50 MeV nucleon–1, the He/(C, N, O) abundance ratio for August 1972 is consistent with all earlier measurements made above that energy which suggests that variations may vanish at high energies.NASA/NAS Senior Resident Research Associate, on leave from TATA Institute of Fundamental Research, Bombay.  相似文献   

8.
Buu N. Tran  John J. Chera 《Icarus》2003,162(1):114-124
The photochemical flow reactor (D.W. Clarke et al., 2000, Icarus 147, 282-291) has been modified to minimize the incorporation of oxygen and other impurities in the photoproducts. A mixture of gases that approximate their mixing ratios on Titan (N2, CH4, H2, C2H2, C2H4, and HC3N) (0.98, 0.018, 0.002, 3.5 × 10−4, 3 × 10−4, 1.7 × 10−5, respectively) was irradiated in the flow photochemical reactor using a 185-nm source to give a Titan haze analog as a solid product. X-ray photoelectron spectroscopy (XPS) gave a composition of 93.3% C, 5.3% N, and 1.4% O. Of the 93.3% carbon, high-resolution XPS revealed that 81.2% was present as CH, CC, and CC groups, 12.1% may be CO, CN, CN, CN, and/or CN groups, 5.3% as a CN group. The peak for N was symmetrical and was assigned to the CN while that for oxygen was assigned to the CO and/or the CO group. Some of these assignments were confirmed by FTIR spectroscopy. The polymeric product had a C:N ratio of 17.6, which is significantly greater than that for Titan haze analogs prepared in discharge reactions. When the polymer was exposed to air for seven days the oxygen content increased by 6% along with an increase in the infrared absorption at 1710 cm−1 assigned to the CO group of a ketone. The oxidation is attributed to the reaction of oxygen with free radicals trapped in the polymer matrix. It is proposed that the photochemical initiation of Titan haze formation from compounds formed from starting materials formed high in Titan’s atmosphere is a more plausible model than haze formed in reactions initiated by solely by discharges. These data will be helpful in the interpretation of the data returned from the Huygens probe of the Cassini mission.  相似文献   

9.
Abstract– Oxygen three‐isotope ratios of three anhydrous chondritic interplanetary dust particles (IDPs) were analyzed using an ion microprobe with a 2 μm small beam. The three anhydrous IDPs show Δ17O values ranging from ?5‰ to +1‰, which overlap with those of ferromagnesian silicate particles from comet Wild 2 and anhydrous porous IDPs. For the first time, internal oxygen isotope heterogeneity was resolved in two IDPs at the level of a few per mil in Δ17O values. Anhydrous IDPs are loose aggregates of fine‐grained silicates (≤3 μm in this study), with only a few coarse‐grained silicates (2–20 μm in this study). On the other hand, Wild 2 particles analyzed so far show relatively coarse‐grained (≥ few μm) igneous textures. If anhydrous IDPs represent fine‐grained particles from comets, the similar Δ17O values between anhydrous IDPs and Wild 2 particles may imply that oxygen isotope ratios in cometary crystalline silicates are similar, independent of crystal sizes and their textures. The range of Δ17O values of the three anhydrous IDPs overlaps also with that of chondrules in carbonaceous chondrites, suggesting a genetic link between cometary dust particles (Wild 2 particles and most anhydrous IDPs) and carbonaceous chondrite chondrules.  相似文献   

10.
《Experimental Astronomy》2009,23(3):947-976
Kronos is a mission aimed to measure in situ the chemical and isotopic compositions of the Saturnian atmosphere with two probes and also by remote sensing, in order to understand the origin, formation, and evolution of giant planets in general, including extrasolar planets. The abundances of noble gases, hydrogen, carbon, nitrogen, oxygen, sulfur and their compounds, as well as of the D/H, 4He/3He, 22Ne/21Ne/20Ne, 36Ar/38Ar, 13C/12C, 15N/14N, 18O/(17O)/16O, 136Xe/134Xe/132Xe/130Xe/129Xe isotopic ratios will be measured by mass spectrometry on two probes entering the atmosphere of Saturn at two different locations near mid-latitudes, down to a pressure of 10 Bar. The global composition of Saturn will be investigated through these measurements, together with microwave radiometry determination of H2O and NH3 and their 3D variations. The dynamics of Saturn’s atmosphere will be investigated from: (1) measurements of pressure, temperature, vertical distribution of clouds and wind speed along the probes’ descent trajectories, and (2) determination of deep winds, differential rotation and convection with combined probe, gravity and radiometric measurements. Besides these primary goals, Kronos will also measure the intensities and characteristics of Saturn’s magnetic field inside the D ring as well as Saturn’s gravitational field, in order to constrain the abundance of heavy elements in Saturn’s interior and in its central core. Depending on the preferred architecture (flyby versus orbiter), Kronos will be in a position to measure the properties of Saturn’s innermost magnetosphere and to investigate the ring structure in order to understand how these tiny structures could have formed and survived up to the present times. An erratum to this article can be found at  相似文献   

11.
Abstract— Our previous analysis of cometary samples returned to Earth by NASA's Stardust spacecraft showed several amines and amino acids, but the origin of these compounds could not be firmly established. Here, we present the stable carbon isotopic ratios of glycine and ε‐amino‐n‐caproic acid (EACA), the two most abundant amino acids identified in Stardust‐returned foil samples measured by gas chromatography‐mass spectrometry coupled with isotope ratio mass spectrometry. The δ13C value for glycine of +29 ± 6‰ strongly suggests an extraterrestrial origin for glycine, while the δ13C value for EACA of ?25 ± 2‰ indicates terrestrial contamination by Nylon‐6 during curation. This represents the first detection of a cometary amino acid.  相似文献   

12.
Abstract– An IDP nicknamed Andric, from a stratospheric dust collector targeted to collect dust from comet 55P/Tempel‐Tuttle, contains five distinct presolar silicate and/or oxide grains in 14 ultramicrotome slices analyzed, for an estimated abundance of approximately 700 ppm in this IDP. Three of the grains are 17O‐enriched and probably formed in low‐mass red giant or asymptotic giant branch (AGB) stars; the other two grains exhibit 18O enrichments and may have a supernova origin. Carbon and N isotopic analyses show that Andric also exhibits significant variations in its N isotopic composition, with numerous discrete 15N‐rich hotspots and more diffuse regions that are also isotopically anomalous. Three 15N‐rich hotspots also have statistically significant 13C enrichments. Auger elemental analysis shows that these isotopically anomalous areas consist largely of carbonaceous matter and that the anomalies may be hosted by a variety of components. In addition, there is evidence for dilution of the isotopically heavy components with an isotopically normal endmember; this may have occurred either as a result of extraterrestrial alteration or during atmospheric entry. Isotopically primitive IDPs such as Andric share many characteristics with primitive meteorites such as the CR chondrites, which also contain isotopically anomalous carbonaceous matter and abundant presolar silicate and oxide grains. Although comets are one likely source for the origin of primitive IDPs, the presence of similar characteristics in meteorites thought to come from the asteroid belt suggests that other origins are also possible. Indeed the distinction between cometary and asteroidal sources is somewhat blurred by recent observations of icy comet‐like planetesimals in the outer asteroid belt.  相似文献   

13.
Abstract— We performed in situ morphological and isotopic studies of graphite in the primitive chondrites Khohar (L3), Mezö‐Madaras (L3), Inman (L3), Grady (H3), Acfer 182 (CH3), Acfer 207 (CH3), Acfer 214 (CH3), and St. Marks (EH5). Various graphite morphologies were identified, including book, veins, fibrous, fine‐grained, spherulitic, and granular graphite, and cliftonite. SIMS measurements of H, C, N, and O isotopic compositions of the graphites revealed large variations in the isotopic ratios of these four elements. The δ15N and δ13C values show significant variations among the different graphite types without displaying any strict correlation between the isotopic composition and morphology. In the Khohar vein graphites, large 15N excesses are found, with δ15Nmax ~+955‰, confirming previous results. Excesses in 15N are also detected in fine‐grained graphites in chondrites of the CH clan, Acfer 182, Acfer 207, and Acfer 214, with δ15N ranging up to +440‰. The 15N excesses are attributed to ion‐molecule reactions at low temperatures in the interstellar molecular cloud (IMC) from which the solar system formed, though the largest excesses seem to be incompatible with the results of some recent calculation. Significant variations in the carbon isotopic ratios are detected between graphite from different chondrite groups, with a tendency for a systematic increase in δ13C from ordinary to enstatite to carbonaceous chondrites. These variations are interpreted as being due to small‐ and large‐scale carbon isotopic variations in the solar nebula.  相似文献   

14.
Dirty ice of a second kind (major components, H2O, CO, and N2; minor components less than several percents, NH3, CH4, and other organic substances such as HCN, CH3CN etc.) is assumed for the composition of volatiles in the cometary nucleus. The consistency with the observations of molecular ions and daughter molecules in the cometary atmosphere is argued by taking into account various ion-molecular reactions and dissociative recombinations. There is a satisfactory agreement for the second kind of dirty-ice model, but the presence of large amounts of CH4 and NH3 is found to be rather in contradiction with observational evidence. A velocity of 8 km s?1 for the hydrogen atoms, derived from analysis of the hydrogen Lyman-alpha corona around comets, is found from the dissociative recombination of H3O+, the dominant constituent of cometary ionosphere, in accordance with H3O++e ?→OH+H+H.  相似文献   

15.
Abstract— The degree of isotopic spatial heterogeneity in the solar nebula has long been a puzzle, with different isotopic systems implying either large‐scale initial spatial homogeneity (e.g., 26Al chronometry) or a significant amount of preserved heterogeneity (e.g., ratios of the three stable oxygen isotopes, 16O, 17O, and 18O). We show here that in a marginally gravitationally unstable (MGU) solar nebula, the efficiency of large‐scale mixing and transport is sufficient to spatially homogenize an initially highly spatially heterogeneous nebula to dispersions of ?10% about the mean value of 26Al/27Al on time scales of thousands of years. A similar dispersion would be expected for 17O/16O and 18O/16O ratios produced by ultraviolet photolysis of self‐shielded molecular CO gas at the surface of the outer solar nebula. In addition to preserving a chronological interpretation of initial 26Al/27Al ratios and the self‐shielding explanation for the oxygen isotope ratios, these solar nebula models offer a self‐consistent environment for achieving large‐scale mixing and transport of thermally annealed dust grains, shock‐wave processing of chondrules and refractory inclusions, and giant planet formation.  相似文献   

16.
The analysis of the polarized light scattered by cometary dust particles provides information on the physical properties of the solid component of cometary comae for C/1995 O1 Hale-Bopp and 1P/Halley. A model of light scattering by a size distribution of aggregates of up to 256 submicron-sized grains (spherical or spheroidal) mixed with single spheroidal particles has been developed, with its parameters adjusted to fit the phase angle and wavelength dependence of the polarization observations. The particles are built of two materials: a non-absorbing silicates-type material and a more absorbing organic-type material. The model reproduces accurately the inversion angle and the positive branch of the polarization phase curves from the visible to the near-infrared spectral domains. A negative branch of the polarization phase curves appears in our model, although the negative branch is not deep enough to reproduce accurately the observations. Significant differences are shown between the two comets, with dominance of small grains in the coma of Comet C/1995 O1 Hale-Bopp, well fitted by a distribution of the volume-equivalent diameter, a, following a−3.0 with a lower cutoff around 0.20 μm and an upper cutoff of at least 40 μm. For 1P/Halley, the size distribution follows a−2.8 with a lower cutoff around 0.26 μm and an upper cutoff of about 38 μm. The relative amount of organic-type particles is larger for 1P/Halley while the amount of aggregates, significant for both comets, is larger for C/1995 O1 Hale-Bopp.  相似文献   

17.
New independent constraints on the amount of water delivered to Earth by comets are derived using the 15N/14N isotopic ratio, measured to be roughly twice as high in cometary CN and HCN as in the present Earth. Under reasonable assumptions, we find that no more than a few percent of Earth’s water can be attributed to comets, in agreement with the constraints derived from D/H. Our results also suggest that a significant part of Earth’s atmospheric nitrogen might come from comets. Since the 15N/14N isotopic ratio is not different in Oort-cloud and Kuiper-belt comets, our estimates apply to the contribution of both types of objects.  相似文献   

18.
The discovery of C/1995 O1 (Hale-Bopp) at 7 AU from the Sun provided the first opportunity to follow the activity of a bright comet over a large range of heliocentric distances rh. Production rates of a number of parent molecules and daughter species have been monitored both pre- and postperihelion. CO was found to be the major driver of the activity far from the Sun, surpassed by water within 3 AU whose production rate reached 1031 s−1 at perihelion. Gas production curves obtained for various species show several behaviours with rh. Gas production curves contain important information concerning the physical state of cometary ices, the structure of the nucleus and all the processes taking place inside the nucleus leading to outgassing. They are relevant to the study of several other phenomena such as the sublimation from icy grains, dust mantling or seasonal effects. For some species, such as H2CO or HNC, they permit to constrain their origin in the coma. We discuss models of subsurface gas production in distant comets and predictions of how such a source may vary as the comet moves along its orbit, approaching perihelion and receding again. Features in the observed gas production curves of comet Hale-Bopp are generally interpretable in terms of either subsurface production (typical example: CO at large rh) or free sublimation (typical example: H2O). Possible implications for the vertical stratification of the cometary ices are reviewed, and preference is found for a model with crystallization of amorphous ice close to the nuclear surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We report the detection of H13CN and HC15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/13C and 14N/15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm−1 resolution. The spectral range 1210-1310 cm−1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H12C14N, H13CN and HC15N from their bands at 713, 706 and 711 cm−1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find at 15° S, and at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane (82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/15N isotopic ratio is found equal to at 15° S and at 83° N. Combining the two values yields 14N/15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/14N ratio found in HCN is ∼3 times higher than in N2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784], which implies a large fractionation process in the HCN photochemistry.  相似文献   

20.
G Notesco 《Icarus》2003,162(1):183-189
The effect of water ice formation temperature and rate of ice deposition on a cold plate on the amount of trapped argon (equivalent to CO), and the ratios of Ar/Kr/Xe trapped in the water ice were studied at 50, 27 and 22 K and at ice formation rates ranging over four orders of magnitude, from 10−1 to 10−5 μm min−1. Contrary to our previous conclusions that cometary ices were formed at 50-60 K, we now conclude that these ices were formed at about 25 K. At 25 K the enrichment ratios for Ar, Kr, and Xe remained the same as those at 50 K, reinforcing our suggestion of cometary contribution of these noble gases to the atmospheres of Earth and Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号