首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dredged rocks from an area of about 15 km2 within the inner floor and on the adjacent walls of the Rift Valley were collected. Based on petrographic and chemical data, four types of basaltic rocks were recognized: (1) picritic basalts with olivine xenocrysts, TiO2 < 0.6%, K2O < 0.1%, (2) olivine basalts with olivine megacrysts, TiO2 = 0.8–1.5%,K2O = 0.1–0.2%, (3) highly phyric and moderately phyric plagioclase basalts with megacrystic plagioclase, TiO2 < 1.3%, K2O < 0.3%, and (4) pyroxene basalts with pyroxene > plagioclase, TiO2 = 0.8–1%,K2O = 0.2–0.4%. The Cr and Ni having high partition coefficients show different variation trends for each type of rock and their values decrease continuously as crystallization proceeds within each type of basalt. It is speculated that two different magmas have given rise to the above-mentioned rocks. One has yielded the picritic basalts and subsequently the olivine basalts after a separation of the olivine cumulates; the other gave rise to the plagioclase basalts.  相似文献   

2.
Tertiary volcanic rocks of Carriacou occupy two-thirds of the island. The volcanics include volcaniclastics, lava flows and dome lavas and range in composition from basalts to andesites. Carriacou basalts fall into two petrographic types (a) clinopyroxene-plagioclase-phyric basalts and (b) olivine microphyric basalts; the latter having higher MgO and lower Al2O3 than the clinopyroxene basalts. Both types are unusually rich in mafic minerals compared with Lesser Antilles basalts in general, although similar types have been reported from the nearby island of Grenada. The potash to silica ratios are relatively high and confirm the similarity between Carriacou and Grenada basalts and the differences between these basalts and basalts from other islands of the Lesser Antilles. The basaltic andesites and andesites from Carriacou correspond closely in mineralogical and chemical composition with typical andesites found elsewhere in the Lesser Antilles. The geochemistry of the volcanics shows that the olivine microphyric basalts display tholeiitic affinities whereas the clinopyroxeneplagioclase-phyric basalt, basaltic andesites and andesites are calcalkaline. The compositional gradation in both the geochemistry and mineralogy of these volcanics suggests that fractional crystallization played an important role in the derivation of the various magma.  相似文献   

3.
CO2 fluid inclusions in mantle minerals are an im-portant source for us to get the information of mantle fluids. Fluid inclusions are mainly composed of CO2, with minor CO, H2O, CH4, N2, H2S, SO2, F, etc., which were demonstrated by lots of Raman spec-trometer analyses in recent years. In contrast, there are very few researches on CO2-bearing melt inclusions since it is more difficult to do so. The available studies have found that the primary CO2-bearing melt inclu-sions are basaltic …  相似文献   

4.
The TiO2–K2O–P2O5 ternary diagram is proposed as a method of discriminating between oceanic and non-oceanic (continental) basalts. This diagram is effective for non-alkaline “primitive” basalts: fractionated rocks cannot be adequately discriminated. Suitable analyses are those which have total alkalies ≤ 20% in an (Fe2O3 + FeO)–MgO–(Na2O + K2O) diagram. The proposed dividing line separates 93% of 222 ocean-floor and ocean-ridge basalts into the oceanic field and > 80% of continental basalt analyses into the non-oceanic field. Two exceptions are the Tertiary basalts of Greenland and the Deccan Traps which have oceanic affinities. “Continental” suites displaying an oceanic affinity in the TiO2–K2O–P2O5 diagram may be a result of abortive attempts to generate new sea floor. Preliminary results for dike swarms and Archean basalts suggest preponderant oceanic affinities. Alteration and metamorphism of oceanic basalts generally occasion enrichment of K2O relative to TiO2 and P2O5.  相似文献   

5.
Analyses of rim-to-interior samples of fresh tholeiitic pillow basalts, deuterically altered holocrystalline basalts, and older, weathered tholeiitic basalts from the deep sea indicate that 87Sr/86Sr ratios of the older basalts are raised by low temperature interaction with strontium dissolved in sea water. 87Sr/86Sr correlates positively with H2O in these basalts; however, there is little detectable modification of the strontium isotope composition in rocks with H2O contents less than 1%. The isotope changes appear to be a function of relatively long-term, low-temperature weathering, rather than high-temperature or deuteric alteration. Strontium abundance and isotopic data for these rocks suggest that strontium content is only slightly modified by interaction with sea water, and it is a relatively insensitive indicator of marine alteration. Average Rb-Sr parameters for samples of apparently unaltered basalt are: Rb= 1.11ppm; Sr= 132ppm; 87Sr/86Sr= 0.70247.  相似文献   

6.
Dong  YunPeng  Zhang  GuoWei  Yang  Zhao  Zhao  Xia  Ma  HaiYong  Yao  AnPing 《中国科学:地球科学(英文版)》2007,50(2):234-245

The mafic-ultramafic assemblages, which thrustthrust into the Wushan-Tangzang boundary fault as some blocks and outcropped in the Yuanyangzhen, Lijiahe, Lubangou and Gaojiahe area, consist mainly of meta-peridotites, gabbros and basalts. The meta-peridotites are characterized by high SiO2 and MgO contents, low ΣREE, as well as their chondrite-normalized rare earth element patterns show some similarities to that of middle oceanic meta-peridotite. The basalts from the Yuanyangzhen, Lijiahe and Lubangou area are characterized by relatively high TiO2 content, low Al2O3 content and Na2O>>K2O. Above all, it is the slight enrichment or flat REE distribution patterns and the unfractionated in HFS elements in the primitive-normalized trace elements distribution patterns that indicate these basalts are similar to that of the typical E-MORB. In comparison, the basalts from the Gaojiahe section are featured by depletion in Nb and Ta contents and enrichment in Th content which show that these were derived from an island-arc setting. From studies of the regional geology, petrology, geochemistry, geo-chronology and all above evidence, it can be suggested that the mafic-ultramafic rocks from the Wushan area are mainly dismembered E-MORB type ophiolite, which represent the fragments of the lithosphere of the Early-Paleozoic Qinling ocean. It is preferred that these rocks were formed in an initial mid-ocean ridge setting during the beginning stage of the oceanic basin spreading. This ophiolite together with the Gaojiahe island-arc basalts shows that there exists an ophiolitic mélange along the Wushan-Tangzang boundary fault, and marks the suture zone after the closure of the Qinling ocean in early Paleozoic.

  相似文献   

7.
The Sintra igneous complex, Portugal was an important centre of activity in late Cretaceous times. The great proportion of thealkaline rocks are felsic and include five large quartz syenite intrusions and trachyandesite, trachyte and alkali rhyolite lavas and dykes, most of which are oversaturated. Mafic rocks are sparse, but vary widely from alkaline and highly undersaturated types containing high K2O, TiO2 and Ba, similar to the contemporaneous Lisbon lavas, to hypersthene normative trachybasalts and one hypersthene normative basalt. The various magma types are intimately associated and a well-developed netveined complex of alkali gabbro, monzonite and syenite is recognised at Cabo da Roca. A study of the dyke distributions, intersections and orientations suggest a close propinquity of both oversaturated and undersaturated and of both felsic and matic magmas. The basic magmas of Sintra and Lisbon show a continuous range in undersaturation (0 to 16% normative nepheline) and rare hypersthene normative basalts. Derivation of the hypersthene normative and mildly undersaturated basalts from the more undersaturated melts by low pressure fractionation or contamination by siliceous crust is shown to be unlikely. High pressure eclogite fractionation of a hypersthene normative basalt or variations in the percentage partial melting of a mantle under conditions where titanphlogopite is a low melting fraction are both processes compatible with the variations in undersaturation and proportions of TiO2, K2O and Ba. The quartz syenites and over satured felsic lavas of Sintra are thought to be derived from hypersthene nor mative parents.  相似文献   

8.
A bimodal volcanic suite with KAr ages of 0.05–1.40 Ma was collected from the Sumisu Rift using alvin. These rocks are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, and provide a present day example of volcanism associated with arc rifting and back-arc basin initiation. Major element geochemistry of the basalts is most similar to that of basalts found in other, more mature back-arc basins, which indicates that back-arc basins need not begin their magmatic evolution with lavas bearing strong arc signatures.Volatile concentrations distinguish Sumisu Rift basalts from island arc basalts and MORB. H2O contents, which are at least four times greater than in MORB, suppress plagioclase crystallization. This suppression results in a more mafic fractionating assemblage, which prevents Al2O3 depletion and delays the initiation of Fe2O3(tot) and TiO2 enrichment. However, unlike arc basalts,Fe3+/ΣFe ratios are only slightly higher than in MORB and are insufficient to cause magnetite saturation early enough to suppress Fe2O3(tot) and TiO2 enrichment. Thus, major element trends are more similar to those of MORB than arcs.H2O, CO2 and S are undersaturated relative to pure phase solubility curves, indicating exsolution of an H2O-rich mixed gas phase. HighH2O/S, highδD, and low (MORB-like)δ34S ratios are considered primary and distinctive of the back-arc basin setting.  相似文献   

9.
The Witu Islands are Quaternary volcanoes that overlie the deepest (about 300–580 km) part of the New Britain Benioff zone. The islands are about 100 km south of the transcurrent-divergent plate boundary that crosses the Bismarck Sea, and they surmount the southeastern end of the Willaumez-Manus Rise. The rocks are olivine- and quartz-normative tholeiitic basalts, low- and high-SiO2 andesites, dacites, and rhyolites. Alkaline rocks that overlie the deep (greater than 300 km) parts of other Benioff zones have not been found in the Witu Islands. Compared to the Witu Islands rocks, those with similar SiO2 contents from New Britain volcanoes that overlie progressively shallower parts of the Benioff zone to the south, are, for example, generally poorer in Na+K, Ti, and P, and higher in Ca and Al. There are similar progressive changes in trace-element abundances, but Zr and Nb contents are distinctly richer in Witu Islands rocks.87Sr/86Sr values range between 0.70311 and 0.7038, which are typical for rocks from New Britain as a whole and from other island arcs in the southwest Pacific. Two143Nd/144Nd values of 0.512211 and 0.512271, taken together with the Sr isotopic results, define a source region equivalent to those for oceanic-island basalts; there is no evidence for sea-water contamination of the sources. Perhaps the most striking feature of the Witu Islands rocks is their compositional diversity. Basalts range from olivine tholeiites similar to marginal-basin basalts from other areas, to quartz tholeiites similar in most respects to those typical of island arcs, and to incompatible-element-enriched tholeiites that are close to silica-undersaturation. Andesites on Unea Island have a strong island-arc signature, but the andesites, dacites, and rhyolite of Garove Island have some features that may be more in common with the silica-oversaturated rocks of oceanic areas. The mineralogy of Witu Islands basalts is characterised by phenocrysts of olivine (Fo89-54), plagioclase (An90-55) and Ca-augite. Cr-Al-rich spinels and aluminous magnetites are present as inclusions in some olivine phenocrysts. Groundmass fayalite, alkali feldspar, and dacitic to rhyolitic glasses high in K/Na are found in a few samples. In contrast to basalts from volcanoes above the shallower parts of the New Britain Benioff zone, those of the Witu Islands are characterised by rarity of low-Ca pyroxene, as phenocrysts or in the groundmass. Rocks richer in SiO2 are characterised by the presence of orthopyroxene phenocrysts and lesser amounts of olivine. Hydrous minerals appear to be absent. Groundmass Fe-Ti oxides define crystallisation temperatures (about 800–1050°C) and oxygen fugacities (fO2) corresponding to those of the Ni-NiO buffer, but up to two fO2 log units above it. The suite as a whole is phenocryst-poor compared to most New Britain volcanic rocks. A significant degree of mantle heterogeneity is inferred by the chemical variability of the Witu Islands rocks. However, there are no compelling reasons in support of the interpretation that source heterogeneity is due to the effect of a slab-derived component. The cause of the heterogeneity is unclear, but may be due to mantle differentiation processes related to an anomalous tectonic setting.  相似文献   

10.
Silicic peralkaline volcanic rocks of the afar depression (Ethiopia)   总被引:1,自引:0,他引:1  
Three main types of recent volcanism may be distinguished in the Afar Depression: 1) oceanic volcanism of the axial ranges; 2) volcanism along the margins where an attenuated sialic crust probably occurs; 3) mainly fissural volcanism of Central-Southern Afar, with associated central volcanoes, similar as a whole to the volcanism of the Ethiopian Rift Valley. Peralkaline silicic volcanic rocks are found in all the three groups but showing some different characteristics which seem related to their geological location and which probably reflect different sources. Moreover emplacement of peralkaline granitic bodies, associated with volcanics of the same composition, marks the first stage of formation of the Afar Depression, in the Early Miocene. Axial Ranges: Erta’Ale and Boina volcanic ranges indicate that peralkaline rocks are the final liquids produced by fractionation of basalt in shallow magma chambers of central volcanoes. The parental magma is a transitional type of basalt with a mildly alkalic affinity, which fractionated under lowpH2O-pO2 conditions. Transition to peralkaline liquids is realized without passing a «true» trachytic (low silica) stage. The first peralkaline liquid is a low silica comendite and evidence exists that «plagioclase effect» was active in determining the first peralkalinity. Within the peralkaline field a fractionation mainly controlled by alkali feldspar progressively increases the peralkalinity and silica oversaturation of residual liquids (transition from comendites to pantellerites). The most peralkaline pantellerites of Boina are produced by fractionation of an alkali feldspar of constant composition (Ab65–68 Or35–32) suggesting that these liquids lie on a «low temperature zone» of the peralkaline oversaturated system. Marginal Units: On the borders of the depression peralkaline silicics are found in volcanic massifs mainly made of metaluminous silicic products. Petrology and geochemistry suggest a complex origin. Crystal fractionation, contamination with sialic crust and chemical changes related to a volatile rich phase, all these processes probably played a role in the genesis of these peralkaline silicic rocks. Central-Southern Afar Fissural Volcanism: Mildly alkaline basalts are associated with peralkaline and metaluminous silicics; intermediate rocks are very scanty. Fractionation from deep seated magmatic bodies with selective eruptivity and partial melting at depth of associated basalts or of a common source material are possible genetic mechanisms.  相似文献   

11.
The South China, including Yangzi Craton and the Cathaysian Block, belongs to the southern part of East Asia continent. It borders Pacific plate on the east side and Qinling-Dabie Orogen on the north side. During the middle-late Cretaceous, a number of downfaulted red basins (the terrestrial sedimentary basins in Fig. 1) and volcanic- sedimentary basins had been developed in South China[1,2], in which the con-temporaneous basaltic rocks were generally distributed (Fig. 1). Although the …  相似文献   

12.
Volcanic rocks from six of the currently or recently active volcances of the Mariana Island are show little variation in major element abundances. SiO2 content averages 51.5 wt.%. The flows are high in Al2O (mean 17.7 wt.%) and Fe oxides (mean 10.1 wt.% calculated as FeO only), and moderate in MgO content (mean 4.7 wt.%), Na2O (mean 2.7 wt.%), and K2O (mean 0.7 wt.%). Only the rocks from Farallon de Pajaros, the northernmost of the Mariana Islands, deviate slightly from the average of the analyses. Three analyses from this island are slightly higher in SiO2 (about 54 wt.%) and Al2O3, and are lower in total Fe oxides and MgO. According to preferred classification, the lavas of the Mariana Islands can be termed mela-andesites, high-alumina basalts, or calc-alkaline (orogenic) basalts. The K2O values (mean 0.7 wt.%) obtained from lavas of the Mariana Islands are significantly higher than the K2O values (about 0.33 wt.%) from volcanics of the Izu chain to the north. Inasmuch as the substantial scatter in location of earthquake foci beneath both arcs prevents accurate delineation of the upper boundary of the Benioff zone, it presently cannot be determined whether this discrepancy in K2O values reflects a difference in depth from the volcanic are to the dipping seismic zone or relates to other phenomena. The older volcanic islands within the Mariana-Bonin island chain apparently defined an island arc system during Eocene to Miocene time. This indicates that the present plane of convergence between the Pacific plate and the Philippine Sea plate has defined the convergence between these plates since Eocene time.  相似文献   

13.
The Fe/Mg+Fe) ratios (XFe) of the Quaternary basalts (SiO2 < 53 wt.%) in the Japanese arcs were examined. The XXFe of relatively magnesian basalts decreases from the volcanic front toward the Japan Sea across the arcs. Based on the partition coefficient of Mg-Fe2+ between olivine and liquid, it is suggested that all the basalts near the volcanic front, which are mostly tholeiitic basalts, are significantly fractionated, whereas many basalts near the Japan Sea, which are mostly alkali basalts, are little fractionated. The K2 O content in the primary basalt magmas increases toward the Japan Sea. Combining the XFe and K2 O data, it is suggested that relatively large amounts of tholeiitic magmas are produced near the volcanic front, but they fractionate during their ascent, whereas smaller amounts of alkali basalt magmas are formed near the Japan Sea, but they can ascend with less fractionation. The density of primary tholeiite magma is significantly larger than that of primary alkali basalt magmas. It is most likely that primary tholeiite magmas cannot ascend beyond the upper crust and would fractionate to produce less dense tholeiitic magmas near the volcanic front, whereas primary alkali basalt magmas can ascend through the upper crust without fractionation, as far as buoyancy is the principal ascending force. In the Japanese arcs, the stress field may be less compressional near the Japan Sea than near the volcanic front, so that magmas can ascend more rapidly in the latter region than in the former. These two factors may be responsible for the above mentioned chemical variations of basalt magmas across the arcs. The variation in volume of the Quaternary volcanic rocks across the arcs can be explained by the presence of a melt-rich zone above but nearly parallel to the subducted slab.  相似文献   

14.
Fluorine contents in about 160 representative Quaternary volcanic rocks and 15 hornblende and biotite phenocrysts in a calc-alkali series in Japan have been determined by a selective ion-electrode method. Tholeiites have the lowest contents and the narrowest range (58–145 ppm), while alkali basalts have the highest contentws and the widest range (301–666 ppm), high-alumina basalts have intermediate values (188–292 ppm). F contents in basalts clearly increase from east to west across the Japanese Islands, as do alkalies, P2O5 REE, U, Th and H2O.The volcanic rocks studied are divided into two groups on the basis of F: (1) witt, increasing % SiO2 or advancing fractionation, F contents show either progressive enrichment; or (2) with increasing fractionation, F contents show rather constant values. The former is produced by fractionation of anhydrous phases from basalt to mafic andesite magmas; the tholeiite series of Nasu volcanic zone (outer zone), northeastern, Japan is a typical example. The latter group is derived through separation of amphibole-bearing phases from basaltic magmas at various depths from upper mantle (about 30 km) to upper crust; the alkali series in southwestern Japan and the calc-alkali series of Chokai volcanic zone (inner zone), northeastern Japan, are examples.  相似文献   

15.
Worldwide alkali olivine basalts (AOB) and their differentiation series have been subdivided into continental, oceanic, or island-arc assemblages according to the inferred crustal environment at their time and place of eruption. No systematic differences have been found in major element composition of the AOB's from these three different environments. As plotted on (Na2O + K2O) vs. SiO2 and AMF diagrams, AOB differentiation trends also show no differences between environments. Thus, AOB appears to be a primary magma generated at sufficient depth in the mantle that its major element content is unaffected by chemical or thermal differences between mantle regions underlying continents, ocean basins, or island arcs. The major element chemistry of AOB is also apparently unaffected by passage through different types of crust.  相似文献   

16.
Rifting of a continent in the Tethys ocean was associated with two forms of volcanism initially identified by Hynes (1972). An early light rare earth element (LREE)-enriched magma accompanied rifting of the continental crust and subsidence of a marginal carbonate platform. The early basalts are high K2O, nepheline-normative basalts, associated with silic igneous rocks, and carrying olivine pseudomorphs. A later or contemporaneous LREE-depleted magma is associated with the active formation of sea floor in a marginal embryo ocean basin. The ophiolite basalts are low K2O, hypersthene-normative basalts containing feldspar laths and pyroxene subhedra. Similar transitions or changes in extrusives are evident in present-day embryo oceans and at the edges of rifted continental margins which surrounded larger ocean basins. Genesis of the tholeiites can be related to 10–30% partial fusion of foliated mantle lherzolites a sample of which adheres to the base of the Othris ophiolite. The alkalic basalts require either a fractionation model, or a more LREE-enriched source perhaps similar to the Ataq lherzolites, since the “tholeiite source lherzolite” can only produce alkalic basalts at low degrees of melting.  相似文献   

17.
Greenrocks are very common in the Tananao Schist of eastern Taiwan where the known fossils are of Permian in age. Fourty-four greenrock samples were chemically analysed and their magma types studied. The chemical composition of the greenrocks have marked variation common in volcanic rock series. The greater parts of the greenrocks belong to basalt and a smaller portion to basaltic andesite (SiO2 53 %–58 %). They are probably isochemical with their original igneous rocks except for volatile components. No striking Fe-enrichment exists in a MgO-ΣFeO-(Na2O=K2O) diagram. Based on (Na2O=K2O)-Al2O3-SiO2 diagrams afterKuno (1960), the parent magma of the rocks mostly belong to the high-alumina basalt series and only a few to alkali olivine basalt series. The high-alumina basalt can be looked upon as having an incipient trend for the calc-alkaline or the hypersthene series ofKuno (1959). The average K/Rb ratio of 460, the average TiO2 percentage of 1.5 %, and low K2O of around 0.5 % seem to warrant a conclusion that the basaltic rocks were poured out in the upper Paleozoic eugeosyncline on an embryonic continental crust. Considering the rock association of amphibolite plus serpentine (dismembered ophiolite), meta-graywacke, metachert, crystalline limestone, metaarkose, and metabasites in the Tananao Schist, the most probable site for the eugeosyncline may been an extensional trough near the fragmented paleo-Asiatic margin.  相似文献   

18.
Preliminary data on major elements, Cs, Ba, Rb, Pb, Sr, REE, Y, Th, U, Zr, Ht, Sn, Nb, W, Mo, Cr, V, Sc, Ni, Co and Cu contents for eight samples coming from the Upper Cretaceous volcanic belt of the Pontic Chain (Northern Turkey) are reported. SiO, versus K2O relationship shows that the analyzed samples belong to the calc-alkaline and shoshonite series. The calc-alkaline rocks appear to represent two distinct magma types one close in composition to typical island are calc-alkaline magmas and one with high incompatible elements concentration and tractionated heavy REE patterns which suggest a genesis by partial melting at high pressure with a garnet bearing residue. Shoshonitic rocks show Na2O/K2O close to one, high incompatible elements concentration, and TiO2%. Al2O3%, Ni and Co contents, Ni/Co and V/Ni ratios and REE patterns similar to typical island are andesites which suggest for these rocks similar genetical processes as the island are calc-alkaline magmas.  相似文献   

19.
Geochemical and petrographic characteristics are used to identify spilites, quartz keratophyres and potassic quartz keratophyres as the most abundant rock types among the Tertiary volcanics of Jamaica. A few low K2O dacites occur within the sequence. The rock suite is bimodal and was erupted in a nonorogenic environment, an Eocene rift. The evidence indicates that the keratophyres were formed by alteration of the original dacites during an episode of alkali metasomatism. The concentrations of TiO2, P2O3, Cr, Zr and Y suggest that the spilites were formed from basic rocks similar to the Columbia River or Deccan flood basalts. Their chemical variations indicate that they were formed by processes similar to those leading to the formation of the keratophyres.  相似文献   

20.
Jin  Zhang  Hong-fu  Zhang  Ji-feng  Ying  Yan-jie  Tang  Li-feng  Niu 《Island Arc》2008,17(2):231-241
Abstract The occurrence of the Pishikou mafic dike in the Qingdao region, China provides important constraints on the origin of Late Cretaceous (86–78 Ma) mafic magmatism on the eastern North China craton. The Pishikou mafic dike is distributed in the Cretaceous Laoshan granitoid body, Qingdao region and contains peridotitic and granulitic xenoliths, xenocrysts, and megacrysts. Rocks from the Pishikou mafic dike are basanites and have low SiO2 (< 42 wt%) and Al2O3 (12.5 wt%) contents, and high MgO (> 8 wt%), total alkalis (Na2O + K2O > 4.8 wt%, Na2O/K2O > 1), TiO2 (> 2.5 wt%), CaO (> 9 wt%) and P2O5 (> 1 wt%). In trace element abundances, they are highly enriched in large ion lithophile elements (LILEs) and light rare‐earth elements (LREEs) (ΣREE = 339–403 ppm, (La/Yb)N = 39–42) without high field strength element (HFSE) depletion. These rocks have radiogenic Sr and Pb, and less radiogenic Nd isotopic compositions [(87Sr/86Sr)i > 0.7059, εNd ≈ 2.7–3.8 (206Pb/204Pb)i ≈ 18.0 ± 0.1]. The diagnostic elemental ratios, such as Nb/La, Nb/U, and Nb/Th, are compatible with those of mid‐oceanic ridge basalts (MORBs) and oceanic island basalts (OIBs). Therefore, the Pishikou mafic dike has a geochemical feature completely different from those of the Early Cretaceous mafic dikes from the Qingdao region, but similar to those of back‐arc basalts from the Japan Sea. This geochemical feature suggests that the Pishikou mafic dike was derived from an asthenosphere source, but contaminated by materials from the subducted Pacific slab. The discovery of this mafic dike thus provides a petrological evidence for the contribution of subducted Pacific slab to the Late Cretaceous magmatism in the Qingdao region of the eastern North China craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号