首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The December 1981 — January 1982 eruption which started in the Christmas night on the SE side of Nyamulagira, gave the longest historical flow (26 km) representing the highest production rate of this volcano in this century (280×106m3 of erupted magmas in 19 days). This eruption built Rugarambiro, a composite spatter cinder-cone. The ejected lava is a K-hawaiite (kivite) whose basicity decreased during the eruption (first emission: D.I. = 40; last products: D.I. = 35). This chemical evolution is reflected by:
  • --the modal composition of lavas. The first emissions are poor in ferromagnesian phenocrysts (olivine + clinopyroxene: 3%) and rich in plagioclase (12%); the contrary is observed in the last ejected lavas (livine + Cpx: 16%; plagioclase: 1%);
  • --the nature of the crystallizing minerals in the groundmass. In fact, only the first ejections include alkaline feldspars, nepheline and Tiphlogopite;
  • --the glassy phase composition which is more differentiated in the first lavas (D.I. 68–84) than in the last ones (D.I. 42–61).
  • A stratification of the Nyamulagira magmatic chamber is proposed where magmatic differentiation has probably occurred for fractional crystallization. Mineralogical thermobarometers lead to locate this magmatic reservoir at the depth of 6–7 km that we had already hypothesized. The presence of phenocrysts of bytownite, basic chrysolite, diopside and salite indicates a basaltic paragenesis which marks a hawaiitic magma chamber feeding.  相似文献   

    2.
     Samples of basalt were collected during the Rapid Response cruise to Loihi seamount from a breccia that was probably created by the July to August 1996 Loihi earthquake swarm, the largest swarm ever recorded from a Hawaiian volcano. 210Po–210Pb dating of two fresh lava blocks from this breccia indicates that they were erupted during the first half of 1996, making this the first documented historical eruption of Loihi. Sonobuoys deployed during the August 1996 cruise recorded popping noises north of the breccia site, indicating that the eruption may have been continuing during the swarm. All of the breccia lava fragments are tholeiitic, like the vast majority of Loihi's most recent lavas. Reverse zoning at the rim of clinopyroxene phenocrysts, and the presence of two chemically distinct olivine phenocryst populations, indicate that the magma for the lavas was mixed just prior to eruption. The trace element geochemistry of these lavas indicates there has been a reversal in Loihi's temporal geochemical trend. Although the new Loihi lavas are similar isotopically and geochemically to recent Kilauea lavas and the mantle conduits for these two volcanoes appear to converge at depth, distinct trace element ratios for their recent lavas preclude common parental magmas for these two active volcanoes. The mineralogy of Loihi's recent tholeiitic lavas signify that they crystallized at moderate depths (∼8–9 km) within the volcano, which is approximately 1 km below the hypocenters for earthquakes from the 1996 swarm. Taken together, the petrological and seismic evidence indicates that Loihi's current magma chamber is considerably deeper than the shallow magma chamber (∼3–4 km) in the adjoining active shield volcanoes. Received: 21 August 1997 / Accepted: 15 February 1998  相似文献   

    3.
    Three major phases are distinguished during the growth of Nyiragongo, an active volcano at the western limit of the Virunga Range, Zaire. Lavas erupted during phase 1 are strongly undersaturated melilitites characterized by the presence of kalsilite phenocrysts, perovskite, and the abundance of calcite in the matrix. Such lavas crop out mainly on the inner crater wall and progressively evolve toward more aphyric melilite nephelinites well represented on the flanks of the volcano. Adventive vents lying at the base of the cone developed along radial fracture systems and erupted olivine and/or clinopyroxene – rich melilitites or nephelinites. Stage 2 lavas are melilite-free nephelinites. Clinopyroxene is the main phenocryst and feldspathoids are abundant in the lavas exposed on the crater wall. These flows result from periodic overflowing of a magma column from an open crater. Extensive fissure flows which erupted from the base of the cone at the end of this stage are related to widespread draining out of magma which in turn induces the formation of the summit pit crater. Magmas erupted during stage 3 are relatively aphyric melilite nephelinites and the main volcanological characteristic is the permanent lava lake observed into the pit crater until the 1977 eruption. Fluctuations of the level of the lava lake was responsible for the development of the inner terraces. Periodic overflowing of the lava lake from the central pit formed the nepheline aggregate lava flows. Petrography and major element geochemistry allow the determination of the principal petrogenetic processes. Melilitites and nephelinites erupted from the summit crater are lavas derived, via clinopyroxene fractionation, from a more primitive melt. The abundance of feldspathoids in these lavas is in keeping with nepheline flotation. Aphyric melilite nephelinites covering the flanks and the extensive fissure flows have a homogeneous chemical composition; rocks from the historical lava lake are slightly more evolved. All these lavas differentiated in a shallow reservoir. Lavas erupted from the parasitic vents are mainly olivine and/or clinopyroxene-phyric rocks. Rushayite and picrites from Muja cone are peculiar high-magnesium lavas resulting from the addition of olivine xenocrysts to melilitic or nephelinitic melts. Fluid and melt inclusions in olivine and clinopyroxene phenocrysts indicate a crystallization depth of 10–14 km. A model involving two reservoirs located at different depths and periodically connected is proposed to explain the petrography of the lavas; this hypothesis is in accordance with geophysical data. Received: July 8, 1993/Accepted: September 10, 1993  相似文献   

    4.
    Geochemical and mineralogical characteristics of the Eocene volcanic succession in Tafresh area of the Urumieh–Dokhtar Magmatic Assemblage (UDMA) are unique in the 2000‐km‐length assemblage. Demonstrating rather steep rare earth element (REE) patterns and the widespread presence of amphibole (+biotite) phenocrysts are two distinct characters that dominate the Eocene volcanic succession of mainly andesitic composition. Coincidence of the geochemical and mineralogical characteristics of the whole volcanic succession with adakites, rather amphibole‐ (+biotite) rich dacitic (with 61–64 wt% SiO2) stocks and dykes, is considered as the key in unraveling the role of ‘slab‐derived melt contribution’ in petrogenesis of the volcanic succession. Slab‐derived melting has been an ongoing process that metasomatized some parts of the mantle wedge from which hybrid rocks (andesites) are derived. Basalts with distinct signatures of slab melt metasomatism are yet another support for the occurrence of slab melting. Interlayering of normal, island‐arc‐type calc‐alkaline volcanic rocks with the slab‐melt metasomatized basalts and hybrid andesites suggests that the slab melting has been motivated by the subduction. Formation of the Tafresh Caldera, the likely consequence of an explosive eruption, is compatible with the volatile‐bearing nature of the adakitic volcanism in the study area. It is indicated by the ubiquitous presence of the hydrous minerals. Beneath the Tafresh area, in Eocene time, the subducting slab seems to have reached a critical high depth that is enough for the development of amphibolite–eclogite. The slab deformation, motivated by the geometry of subduction and/or the underlying mantle's steeper geotherms, is suggested to have resulted in the slab melting that helped develop a rock assemblage unique to the UDMA.  相似文献   

    5.
    A summit eruption of Kartala commenced on September 8th, 1972 and finished on October 5th, 1972. In the course of this eruption, approximately 5×106 m3 of alkali olivine basalt was erupted from a N-S fissure system within and adjacent to the caldera. Aa flows were partly ponded within the caldera, almost filling the 1918 Choungou Chagnoumeni crater pit, and partly spilled NW down the flanks of the volcano. The lavas are of uniform composition, almost identical to those erupted in 1965 and closely resembling the majority of flows erupted during the last 115 years. One-atmosphere melting experiments support petrographic and chemical evidence that the lavas are coctetic, with coprecipitation of olivine, augite and plagioclase. The lavas were crupted at, or close to, their liquidus temperature, determined at approximately 1170°C. Whereas eruptions of Kartala in the nineteenth century were distributed widely along a fissure system approximately 45 km long by 7 km wide, the eruptions since 1918 have been confined to the vicinity of the summit caldera.  相似文献   

    6.
    Major and minor elements have been determined on 26 samples of andesitie to rhyolitic lavas from Nevado Coropuna and Andagua valley in Southern Peru. Nevado Coropuna dating back since late Miocene is the highest stratovolcano of Peru. It is located at 150 km NW of Arequipa and at 110 km E of the Pacific coast. Andagua valley is situated at about 30 km E of Coropuna. The magmatic activity there, as shown by the presence of several cones, is more recent than that of Corpouna and is related to the tectonic graben characterizing this valley. The geological position of the valley is very important because it is near the transverse line separating the zone of rather flat subduction of the Nazca plate from another one dipping more steeply to the SE. The lavas from Andagua show higher Ti, P, Sr and alkali contents than those from Coropuna, and several display some alkaline tendency with Na affinity. No shoshonitic rocks have been found in the area. According to their geochemistry, Corpuna and Andagua andesites do not seem to have been originated by a single process. In particular, the distribution of Ni, Cr, Ti, Zr, Y, P, Nb, and Sr would exclude either adirect origin from pyrolitic materials, or aprogressive crustal contamination as the most important factors for their origin. Calculations of mineral/melt equilibria for Coropana andesites suggests crystallization processes at depth less than 35 km and H2O-understurated conditons at the time of the phenocrysts precipitation, indicating a possible high undersaturation at depth of the source zone. As lar as the rhyolites are concerned, their geochemical characteristics do not preclude a crustal origin. A statistical study of the chemical zonation of the Plio-Quaternary lavas of southern Peru has shown an increase of Ti and P contents eastward of the Chile-Peru trench.  相似文献   

    7.
    Mount Etna volcano is often characterized by bilateral eruptive events, involving both the south (S) and the north east (NE) rifts. The last event occurred in 2002?C2003 from October 27 to January 28. A detailed, stratigraphically time-controlled sampling of lavas and tephra of the southern eruptive fissure was performed in order to (1) track the petrological features of products during the eruption and (2) integrate the results with those previously obtained on the NE rift. Whole-rock composition and textural observations were implemented by major and minor element analyses of plagioclases in lavas and tephra from both sides of the volcano. Fractionation models constrained by mass balance (major and trace elements) and Rayleigh calculations suggest that magmas are linked by the same liquid line of descent by fractionating 9.11?% of a mineral assemblage of Cpx (52.69?%), Plg (21.41), and Ol (7.46?%). These new data allowed us to identify at least two feeding episodes through the southern fissure and infer that high-K2O porphyritic magmas, emitted on both the S and NE rifts, derives by fractionation from the same parent magma. However, lavas and tephra from the southern flank were slightly more primitive. Textural and petrological study of plagioclase moreover indicates that chemical?Cphysical conditions in the deep feeding system were similar for magmas erupting from both rifts as suggested by the presence of dissolved rounded cores in both lavas. Magmas evolved differently on the S and the NE rifts only at shallow levels. Comparison with published seismotectonic data supports the idea that the main magma feeding the eruption on October 27 ascended along the same pathway at depth and was intercepted by the fracture system of the S and NE rifts at shallow depth, between 6 and 3?km b.s.l.  相似文献   

    8.
    The magma eruption rates of Merapi volcano form 1890 to 1992 are re-examined chronologically. For this volcano, movements of extruded lavas and domes as well as their extrusions are important because they control the modes of the subsequent activities and cause nuées ardentes and lahars. The monthly eruption rates varied widely, but the cumulative volume of lavas has increased linearly and is expressed as 0.1x106 m3/month. The magma production rate of this volcano may have been constant for these 100 years. Recurrent excessive effusion of lavas is tentatively interpreted by assuming a magma reservoir. The averaged eruption rate is small in comparison with other volcanoes such as Nyramuragia, Kilauea and Vesuvio. However, it is remarkable that the activity has been continuous for these 100 years and the total amount of lava discharged during this period reached more than 108 m3. A simple model for the formation of the 1992 lava dome is presented. The viscosity of the lavas is probably between 106 and 107 P and the length of the magma conduit is probably less than 10 km.  相似文献   

    9.
    A suite of 23 basaltic to dacitic lavas erupted over the last 350 kyr from the Mount Adams volcanic field has been analyzed for U–Th isotope compositions to evaluate the roles of mantle versus crustal components during magma genesis. All of the lavas have (230Th/238U) > 1 and span a large range in (230Th/232Th) ratios, and most basalts have higher (230Th/232Th) ratios than andesites and dacites. Several of the lavas contain antecrysts (crystals of pre-existing material), yet internal U–Th mineral isochrons from six of seven lavas are indistinguishable from their eruption ages. This indicates a relatively brief period of time between crystal growth and eruption for most of the phenocrysts (olivine, clinopyroxene, plagioclase, magnetite) prior to eruption. One isochron gave a crystallization age that is ~ 20–25 ka older than its corresponding eruptive age, and is interpreted to reflect mixing of older and juvenile crystals or a protracted period of magma storage in the crust. Much of the eruptive volume since 350 ka consists of lavas that have small to moderate 230Th excesses (2–16%), which are likely inherited from melting of a garnet-bearing intraplate (“OIB-like”) mantle source. Following melt generation and subsequent migration through the upper mantle, most Mt. Adams magmas interacted with young, mafic lower crust, as indicated by 187Os/188Os ratios that are substantially more radiogenic than the mantle or those expected via mixing of subducted material and the mantle wedge. Moreover, Os–Th isotope variations suggest that unusually large 230Th excesses (25–48%) and high 187Os/188Os ratios in some peripheral lavas reflect assimilation of small degree partial melts of pre-Quaternary basement that had residual garnet or Al-rich clinopyroxene. Despite the isotopic evidence for lower crustal assimilation, these processes are not generally recorded in the erupted phenocrysts, indicating that the crystal record of the deep-level ‘cryptic’ processes has been decoupled from shallow-level crystallization.  相似文献   

    10.
    The sixteenth eruption of Hekla since 1104 began on August 17th, 1980, after the shortest repose period on record, only ten years. The eruption started with a plinian phase and simultaneously lava issued at high rate from a fissure that runs along the Hekla volcanic ridge. The production rate declined rapidly after the first day and the eruption stopped on August 20th. A total of 120 million m3 of lava and about 60 million m3 of airborne tephra were produced during this phase of the activity. In the following seven months steam emissions were observed on the volcano. Activity was renewed on April 9th 1981, and during the following week additional 30 million m3 of lava flowed from a summit crater and crater rows on the north slope. The lavas and tephra are of uniform intermediate chemical composition similar to that of earlier Hekla lavas. Although the repose time was short the eruptions fit well into the behaviour pattern of earlier eruptions. Distance changes in a geodimeter network established after the eruptions are interpreted as due to inflation of magma reservoirs at 7–8 kilometers depth.  相似文献   

    11.
    Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80×200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occurred in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and disequilibrium mineral assemblages. In addition, some dacites and andesites contain Mg and Ni-rich olivines and/or have high MgO, Cr, Ni, Co, and Sc contents that are not in equilibrium with the host rock and indicate mixing between basalt or cumulate material and more evolved magmas. Incompatible element variations suggest that fractionation is responsible for some of the compositional range between basaltic andesite and dacite, but the rhyolites have K, Ba, Th, and Rb contents that are too low for the magmas to be generated by fractionation of the intermediate rocks. Limited Sr-isotope data support the possibility that the rhyolites may be partial melts of underlying volcanic rocks. Received March 13, 1993/Accepted September 10, 1993  相似文献   

    12.
    The six eruption episodes of the 10 ka Pahoka–Mangamate (PM) sequence (see companion paper) occurred over a ?200–400-year period from a 15-km-long zone of multiple vents within the Tongariro Volcanic Centre (TgVC), located at the southern end of the Taupo Volcanic Zone (TVZ). Most TgVC eruptives are plagioclase-dominant pyroxene andesites and dacites, with strongly porphyritic textures indicating their derivation from magmas that ascended slowly and stagnated at shallow depths. In contrast, the PM pyroclastic eruptives show petrographic features (presence of phenocrystic and groundmass hornblende, and the coexistence of olivine and augite without plagioclase during crystallisation of phenocrysts and microphenocrysts) which suggest that their crystallisation occurred at depth. Depths exceeding 8 km are indicated for the dacitic magmas, and >20 km for the andesitic and basaltic andesitic magmas. Other petrographic features (aphyric nature, lack of reaction rims around hornblende, and the common occurrence of skeletal microphenocrystic to groundmass olivine in the andesites and basaltic andesites) suggest the PM magmas ascended rapidly immediately prior to their eruption, without any significant stagnation at shallow depths in the crust. The PM eruptives show three distinct linear trends in many oxide–oxide diagrams, suggesting geochemical division of the six episodes into three chronologically-sequential groups, early, middle and late. Disequilibrium features on a variety of scales (banded pumice, heterogeneous glassy matrix and presence of reversely zoned phenocrysts) suggest that each group contains the mixing products of two end-member magmas. Both of these end-member magmas are clearly different in each of the three groups, showing that the PM magma system was completely renewed at least three times during the eruption sequence. Minor compositional diversity within the eruptives of each group also allows the PM magmas to be distinguished in terms of their source vents. Because petrography suggests that the PM magmas did not stagnate at shallow levels during their ascent, the minor diversity in magmas from different vents indicates that magmas ascended from depth through separate conduits/dikes to erupt at different vents either simultaneously or sequentially. These unique modes of magma transport and eruption support the inferred simultaneous or sequential tapping of small separate magma bodies by regional rifting in the southern Taupo Volcanic Zone during the PM eruption sequence (see companion paper).  相似文献   

    13.
    Chemical and petrographic analyses of 51 sequential lava flows from the central vent of Mayon volcano show cyclical variation. In the two most recent cycles, from 1800 to 1876 and from 1881 to the present, one to three basaltic flows are followed by six to ten andesitic flows. Modal and whole-rock chemical parameters show the most regular cyclical variation; calculated groundmass chemical parameters vary less regularly. There is also a long-term trend, over approximately 1700 years of exposed section, toward more basic compositions.The cyclical variation in modes and the chemical composition of the lavas apparently results from periodic influxes of basaltic magma from depth into a shallow magma system. Fractional crystallization of olivine, augite, hypersthene, calcic plagioclase, magnetite and pargasitic hornblende produces successively more andesitic lavas until the next influx of basaltic magma. Differentiation in a deep zone of magma generation is not excluded by the data, but is more likely responsible for the overall change toward more basic compositions than for the cyclical variation.Three points in a cycle — the beginning of basaltic lavas, the beginning of andesitic lavas and a leveling-off of SiO2, K2 O and K2O/Na2O values — correspond roughly to the beginning of frequent effusive eruptions (with or without an early Plinian eruption), frequent weak to moderately explosive (Strombolian) eruptions, and less frequent explosive (Vulcanian) eruptions, respectively. Recognition of the current stage in a cycle can give a qualitative indication of the nature of forthcoming eruptions. Changes in several specific parameters may precede basaltic lavas and allow early detection of basaltic influxes. These include minima in the glass inclusion/plagioclase phenocryst and phenocryst/groundmass ratios, vesicularity and groundmass TiO2, a decrease in hypersthene phenocrysts, and constant values for the whole-rock K2O/Na2O ratio. The Mayon area is densely populated, making prediction of eruption type important for safety and land-use planning.  相似文献   

    14.
    西昆仑阿什火山机构及岩石学、矿物学特征   总被引:4,自引:1,他引:3       下载免费PDF全文
    阿什库勒盆地位于NE向阿尔金断裂与NW向康西瓦断裂的"弧形"交会处,构造活动十分活跃,盆地内发育10余座火山,其中阿什火山为该火山群中最新活动的火山。文中从火山地质、熔岩和斑晶成分、显微结构特征及地质温压计4个方面对阿什火山进行了详细研究。结果表明,阿什火山由火山锥和熔岩流组成,锥体由早期的渣锥和晚期的溅落锥组成,熔岩流分布面积约33km2,可划分为4个流动单元。熔岩属于钾玄岩系列,岩性为粗安岩,显微镜下呈斑状结构。斑晶以长石(主要为中长石)和辉石(包括普通辉石、古铜辉石和紫苏辉石)为主;基质为玻璃质、隐晶质、微晶质,部分含有大量的长石和辉石。斑晶与岩浆的平衡温度为1 104~1 194℃,压力为570~980MPa,对应的岩浆房深度为18.92~32.29km。  相似文献   

    15.
    The formation of shallow, caldera-sized reservoirs of crystal-poor silicic magma requires the generation of large volumes of silicic melt, followed by the segregation of that melt and its accumulation in the upper crust. The 21.8?±?0.4-ka Cape Riva eruption of Santorini discharged >10 km3 of crystal-poor dacitic magma, along with <<1 km3 of hybrid andesite, and collapsed a pre-existing lava shield. We have carried out a field, petrological, chemical, and high-resolution 40Ar/39Ar chronological study of a sequence of lavas discharged prior to the Cape Riva eruption to constrain the crustal residence time of the Cape Riva magma reservoir. The lavas were erupted between 39 and 25 ka, forming a ~2-km3 complex of dacitic flows, coulées and domes up to 200 m thick (Therasia dome complex). The Therasia dacites show little chemical variation with time, suggesting derivation from one or more thermally buffered reservoirs. Minor pyroclastic layers occur intercalated within the lava succession, particularly near the top. A prominent pumice fall deposit correlates with the 26-ka Y-4 ash layer found in deep-sea sediments SE of Santorini. One of the last Therasia lavas to be discharged was a hybrid andesite formed by the mixing of dacite and basalt. The Cape Riva eruption occurred no more than 2,800?±?1,400 years after the final Therasia activity. The Cape Riva dacite is similar in major element composition to the Therasia dacites, but is poorer in K and most incompatible trace elements (e.g. Rb, Zr and LREE). The same chemical differences are observed between the Cape Riva and Therasia hybrid andesites, and between the calculated basaltic mixing end-members of each series. The Therasia and Cape Riva dacites are distinct silicic magma batches and are not related by shallow processes of crystal fractionation or assimilation. The Therasia lavas were therefore not simply precursory leaks from the growing Cape Riva magma reservoir. The change 21.8 ky ago from a magma series richer in incompatible elements to one poorer in those elements is one step in the well documented decrease with time of incompatibles in Santorini magmas over the last 530 ky. The two dacitic magma batches are interpreted to have been emplaced sequentially into the upper crust beneath the summit of the volcano, the first (Therasia) then being partially, or wholly, flushed out by the arrival of the second (Cape Riva). This constrains the upper-crustal residence time of the Cape Riva reservoir to less than 2,800?±?1,400 years, and the associated time-averaged magma accumulation rate to >0.004 km3 year-1. Rapid ascent and accumulation of the Cape Riva dacite may have been caused by an increased flux of mantle-derived basalt into the crust, explaining the occurrence of hybrid andesites (formed by the mixing of olivine basalt and dacite in approximately equal proportions) in the Cape Riva and late Therasia products. Pressurisation of the upper crustal plumbing system by sustained, high-flux injection of dacite and basalt may have triggered the transition from prolonged, largely effusive activity to explosive eruption and caldera collapse.  相似文献   

    16.
    A geochemical and isotopic study of lavas from Pichincha, Antisana and Sumaco volcanoes in the Northern Volcanic Zone (NVZ) in Ecuador shows their magma genesis to be strongly influenced by slab melts. Pichincha lavas (in fore arc position) display all the characteristics of adakites (or slab melts) and were found in association with magnesian andesites. In the main arc, adakite-like lavas from Antisana volcano could be produced by the destabilization of pargasite in a garnet-rich mantle. In the back arc, high-niobium basalts found at Sumaco volcano could be produced in a phlogopite-rich mantle. The strikingly homogeneous isotopic signatures of all the lavas suggest that continental crust assimilation is limited and confirm that magmas from the three volcanic centers are closely related. The following magma genesis model is proposed in the NVZ in Ecuador: in fore arc position beneath Pichincha volcano, oceanic crust is able to melt and produces adakites. En route to the surface, part of these magmas metasomatize the mantle wedge inducing the crystallization of pargasite, phlogopite and garnet. In counterpart, they are enriched in magnesium and are placed at the surface as magnesian andesites. Dragged down by convection, the modified mantle undergoes a first partial melting event by the destabilization of pargasite and produces the adakite-like lavas from Antisana volcano. Lastly, dragged down deeper beneath the Sumaco volcano, the mantle melts a second time by the destabilization of phlogopite and produces high-niobium basalts. The obvious variation in spatial distribution (and geochemical characteristics) of the volcanism in the NVZ between Colombia and Ecuador clearly indicates that the subduction of the Carnegie Ridge beneath the Ecuadorian margin strongly influences the subduction-related volcanism. It is proposed that the flattening of the subducted slab induced by the recent subduction (<5 Ma?) of the Carnegie Ridge has permitted the progressive warming of the oceanic crust and its partial melting since ca. 1.5 Ma. Since then, the production of adakites in fore arc position has deeply transformed the magma genesis in the overall arc changing from ‘typical’ calc-alkaline magmatism induced by hydrous fluid metasomatism, to the space- and time-associated lithology adakite/high-Mg andesite/adakite-like andesite/high-Nb basalts characteristic of slab melt metasomatism.  相似文献   

    17.
    The Chichontepec volcano is a Plio-Pleistocene composite volcano that erupted lavas ranging from high-alumina basalts to dacites. It experienced a caldera-forming paroxysmal eruption during the early Pleistocene. Pre-caldera lavas are mildly tholeiitic and they evolved mainly by low pressure crystal fractionation, notwithstanding the fact that most mafic lavas (low-MgO high-alumina basalts) retain traces of polybaric evolution. Conversely, post-caldera lavas, which are mainly pyroxene andesites, are clearly calc-alkaline, having evolved by open-system crystal fractionation. Sr–Nd isotopic data and trace elements characteristics indicate that the same mantle source was involved in the petrogenesis of these series. Modelling the AFC process showed that it did not play any role in the petrogenesis of these rocks; a crystal fractionation model is considered to be more relevant. A slight variation in the fractionating assemblage could have caused the transition from an early mildly tholeiitic trend to a late calc-alkaline one. Mineralogical evidence, mass-balance calculations and elemental chemistry support this hypothesis, assuming that the greater amount of pyroxene on the liquidus is at the expense of plagioclase; this would have prevented the trend in iron enrichment.  相似文献   

    18.
    The 1974 Etna eruption that occurred on the lower, west part of the volcano is rather exceptional as it appeared independent of the central main vent activity. The products of this eruption also differ from those commonly emitted throughout historic times. They are almost aphyric and display an unusual order of crystallization, clinopyroxene being a near liquidus phase instead of plagioclase that is typical in all other recent lavas. The chemical composition is also slightly more basic than that of pyroclastics contemporaneously erupted by the summit Central Crater. These volcanological and petrological features are symptomatic of a separation at depth of the 1974 magma from the central conduit. The eruption itself, however, appears to have been governed by the general structural environment of the volcano. From this stand-point, there is evident interdependence between the various paroxysms of the past five years and it is suggested that the volcanic activity itself has direct relations with the regional tectonics. A model of the superficial structure of Mount Etna is given that best accounts for the observations.  相似文献   

    19.
    Phase equilibrium experiments were performed to determine the pre-eruptive conditions of the phonolitic magma responsible for the last eruption (about 1,150 yr B.P.) of Teide volcano. The Lavas Negras phonolite contains 30 to 40 wt% of phenocrysts, mainly anorthoclase, diopside, and magnetite. We have investigated pressures from 100 to 250 MPa, temperatures from 750 to 925°C, water contents from 1.3 to 10 wt%, at an oxygen fugacity (fO2) of 1 log unit above the Ni-NiO solid buffer. Comparison of the natural and experimental phase proportions and compositions indicates that the phonolite was stored at 900 ± 20°C, 150 ± 50 MPa, 3 ± 0.5 wt% dissolved H2O in the melt. The fO2 was probably close to the fayalite-magnetite-quartz solid buffer judging from results of other experimental studies. These conditions constrain the magma storage depth at about 5 ± 1 km below current summit of Teide volcano. Given that the island has not suffered any major structural or topographic changes since the Lavas Negras eruption, any remaining magma from this event should still be stored at such depth and probably with a similar thermal and rheological state.  相似文献   

    20.
    Abstract West Rota Volcano (WRV) is a recently discovered extinct submarine volcano in the southern Mariana Arc. It is large (25 km diameter base), shallow (up to 300 m below sealevel), and contains a large caldera (6 × 10 km, with up to 1 km relief). The WRV lies near the northern termination of a major NNE‐trending normal fault. This and a second, parallel fault just west of the volcano separate uplifted, thick frontal arc crust to the east from subsiding, thin back‐arc basin crust to the west. The WRV is distinct from other Mariana Arc volcanoes: (i) it consists of a lower, predominantly andesite section overlain by a bimodal rhyolite‐basalt layered sequence; (ii) andesitic rocks are locally intensely altered and mineralized; (iii) it has a large caldera; and (iv) WRV is built on a major fault. Submarine felsic calderas are common in the Izu and Kermadec Arcs but are otherwise unknown from the Marianas and other primitive, intraoceanic arcs. 40Ar–39Ar dating indicates that andesitic volcanism comprising the lower volcanic section occurred 0.33–0.55 my ago, whereas eruption of the upper rhyolites and basalts occurred 37–51 thousand years ago. Four sequences of rhyolite pyroclastics each are 20–75 m thick, unwelded and show reverse grading, indicating submarine eruption. The youngest unit consists of 1–2 m diameter spheroids of rhyolite pumice, interpreted as magmatic balloons, formed by relatively quiet effusion and inflation of rhyolite into the overlying seawater. Geochemical studies indicate that felsic magmas were generated by anatexis of amphibolite‐facies meta‐andesites, perhaps in the middle arc crust. The presence of a large felsic volcano and caldera in the southern Marianas might indicate interaction of large normal faults with a mid‐crustal magma body at depth, providing a way for viscous felsic melts to reach the surface.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号