首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many current and future astronomical surveys will rely on samples of strong gravitational lens systems to draw conclusions about galaxy mass distributions. We use a new strong lensing pipeline (presented in Paper I of this series) to explore selection biases that may cause the population of strong lensing systems to differ from the general galaxy population. Our focus is on point-source lensing by early-type galaxies with two mass components (stellar and dark matter) that have a variety of density profiles and shapes motivated by observational and theoretical studies of galaxy properties. We seek not only to quantify but also to understand the physics behind selection biases related to: galaxy mass, orientation and shape; dark matter profile parameters such as inner slope and concentration; and adiabatic contraction. We study how all of these properties affect the lensing Einstein radius, total cross-section, quad/double ratio and image separation distribution, with a flexible treatment of magnification bias to mimic different survey strategies. We present our results for two families of density profiles: cusped and deprojected Sérsic models. While we use fixed lens and source redshifts for most of the analysis, we show that the results are applicable to other redshift combinations, and we also explore the physics of how our results change for very different redshifts. We find significant (factors of several) selection biases with mass; orientation, for a given galaxy shape at fixed mass; cusped dark matter profile inner slope and concentration; concentration of the stellar and dark matter deprojected Sérsic models. Interestingly, the intrinsic shape of a galaxy does not strongly influence its lensing cross-section when we average over viewing angles. Our results are an important first step towards understanding how strong lens systems relate to the general galaxy population.  相似文献   

2.
Rich and massive clusters of galaxies at intermediate redshift are capable of magnifying and distorting the images of background galaxies. A comparison of different mass estimators among these clusters can provide useful information about the distribution and composition of cluster matter and its dynamical evolution. Using the hitherto largest sample of lensing clusters drawn from the literature, we compare the gravitating masses of clusters derived from the strong/weak gravitational lensing phenomena, from the X-ray measurements based on the assumption of hydrostatic equilibrium, and from the conventional isothermal sphere model for the dark matter profile characterized by the velocity dispersion and core radius of galaxy distributions in clusters. While there is excellent agreement between the weak lensing, X-ray and isothermal sphere model-determined cluster masses, these methods are likely to underestimate the gravitating masses enclosed within the central cores of clusters by a factor of 2–4 as compared with the strong lensing results. Such a mass discrepancy has probably arisen from the inappropriate applications of the weak lensing technique and the hydrostatic equilibrium hypothesis to the central regions of clusters, as well as from assuming an unreasonably large core radius for both luminous and dark matter profiles. Nevertheless, it is pointed out that these cluster mass estimators may be safely applied on scales greater than the core sizes. Namely, the overall clusters of galaxies at intermediate redshift can still be regarded as the dynamically relaxed systems, in which the velocity dispersion of galaxies and the temperature of X-ray emitting gas are good indicators of the underlying gravitational potentials of clusters.  相似文献   

3.
We confirm and extend the recent finding that the central surface density  μ0D≡ r 0ρ0  of galaxy dark matter haloes, where r 0 and  ρ0  are the halo core radius and central density, is nearly constant and independent of galaxy luminosity. Based on the co-added rotation curves (RCs) of ∼1000 spiral galaxies, the mass models of individual dwarf irregular and spiral galaxies of late and early types with high-quality RCs, and the galaxy–galaxy weak-lensing signals from a sample of spiral and elliptical galaxies, we find that  log μ0D= 2.15 ± 0.2  in units of  log(M pc−2)  . We also show that the observed kinematics of Local Group dwarf spheroidal galaxies are consistent with this value. Our results are obtained for galactic systems spanning over 14 mag, belonging to different Hubble types and whose mass profiles have been determined by several independent methods. In the same objects, the approximate constancy of  μ0D  is in sharp contrast to the systematical variations, by several orders of magnitude, of galaxy properties, including  ρ0  and central stellar surface density.  相似文献   

4.
We carry out numerical simulations of dissipationless major mergers of elliptical galaxies using initial galaxy models that consist of a dark matter haloes and a stellar bulge with properties consistent with the observed fundamental plane. By varying the density profile of the dark matter haloes [standard Navarro, Frenk & White (NFW) profile versus adiabatically contracted NFW profile], the global stellar to dark matter mass ratio and the orbit of the merging galaxies, we are able to assess the impact of each of these factors on the structure of the merger remnant. Our results indicate that the properties of the remnant bulge depend primarily on the angular momentum and energy of the orbit; for a cosmologically motivated orbit, the effective radius and velocity dispersion of the remnant bulge remain approximately on the fundamental plane. This indicates that the observed properties of elliptical galaxies are consistent with significant growth via late dissipationless mergers. We also find that the dark matter fraction within the effective radius of our remnants increases after the merger, consistent with the hypothesis that the tilt of the fundamental plane from the virial theorem is due to a varying dark matter fraction as a function of galaxy mass.  相似文献   

5.
We present an estimate of the strong lensing probability by dark halos, with emphasis on the role of the baryonic matter arising purely from radiative cooling. We treat the contribution of the cooled baryons optimistically with all the cooled baryons confined within a central core, and including no feedback process from stellar evolution. Our two-component model provides a strong lensing probability that is in good agreement with the observed distribution of multiple images of quasars, provided that the cooled baryons are deposited within a spherical region of radius of 0.1 times the virial radius and follow an isothermal profile. It is pointed out that strong lensing may be used as an additional probe‘of baryon physics in dark halos though this may meanwhile complicate the test of the inner density profiles of dark matter in halos using the observed strong lensing probability.  相似文献   

6.
We discuss the problem of using stellar kinematics of early-type galaxies to constrain the orbital anisotropies and radial mass profiles of galaxies. We demonstrate that compressing the light distribution of a galaxy along the line of sight produces approximately the same signature in the line-of-sight velocity profiles as radial anisotropy. In particular, fitting spherically symmetric dynamical models to apparently round, isotropic face-on flattened galaxies leads to a spurious bias towards radial orbits in the models, especially if the galaxy has a weak face-on stellar disc. Such face-on stellar discs could plausibly be the cause of the radial anisotropy found in spherical models of intermediate luminosity ellipticals such as NGC 2434, 3379 and 6703.
In the light of this result, we use simple dynamical models to constrain the outer mass profiles of a sample of 18 round, early-type galaxies. The galaxies follow a Tully–Fisher relation parallel to that for spiral galaxies, but fainter by at least 0.8 mag ( I -band) for a given mass. The most luminous galaxies show clear evidence for the presence of a massive dark halo, but the case for dark haloes in fainter galaxies is more ambiguous. We discuss the observations that would be required to resolve this ambiguity.  相似文献   

7.
We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 planetary nebulae out to seven effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megacam, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the planetary nebulae agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside  1 R e  . The velocity dispersion profile declines with radius, though not very steeply, down to  ∼70 km s−1  at the last data point.
We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component Λ cold dark matter (CDM) motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fitting solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model.
Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration haloes, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.  相似文献   

8.
The results obtained from a study of the mass distribution of 36 spiral galaxies are presented. The galaxies were observed using Fabry–Perot interferometry as part of the GHASP survey. The main aim of obtaining high-resolution Hα 2D velocity fields is to define more accurately the rising part of the rotation curves which should allow to better constrain the parameters of the mass distribution. The Hα velocities were combined with low resolution H  i data from the literature, when available. Combining the kinematical data with photometric data, mass models were derived from these rotation curves using two different functional forms for the halo: an isothermal sphere (ISO) and a Navarro–Frenk–White (NFW) profile. For the galaxies already modelled by other authors, the results tend to agree. Our results point at the existence of a constant density core in the centre of the dark matter haloes rather than a cuspy core, whatever the type of the galaxy from Sab to Im. This extends to all types the result already obtained by other authors studying dwarf and low surface brightness galaxies but would necessitate a larger sample of galaxies to conclude more strongly. Whatever model is used (ISO or NFW), small core radius haloes have higher central densities, again for all morphological types. We confirm different halo scaling laws, such as the correlations between the core radius and the central density of the halo with the absolute magnitude of a galaxy: low-luminosity galaxies have small core radius and high central density. We find that the product of the central density with the core radius of the dark matter halo is nearly constant, whatever the model and whatever the absolute magnitude of the galaxy. This suggests that the halo surface density is independent from the galaxy type.  相似文献   

9.
10.
Popular models for describing the luminosity-density profiles of dynamically hot stellar systems (e.g. Jaffe, Hernquist, Dehnen) were constructed with the desire to match the deprojected form of an   R 1/4  light profile. Real galaxies, however, are now known to have a range of different light-profile shapes that scale with mass. Consequently, although highly useful, the above models have implicit limitations, and this is illustrated here through their application to a number of real galaxy density profiles. On the other hand, the analytical density profile given by Prugniel & Simien closely matches the deprojected form of Sérsic   R 1/ n   light profiles – including deprojected exponential light profiles. It is thus applicable for describing bulges in spiral galaxies, dwarf elliptical galaxies, and both ordinary and giant elliptical galaxies. Moreover, the observed Sérsic quantities define the parameters of the density model. Here we provide simple equations, in terms of elementary and special functions, for the gravitational potential and force associated with this density profile. Furthermore, to match galaxies with partially depleted cores, and better explore the supermassive black hole/galaxy connection, we have added a power-law core to this density profile and derived similar expressions for the potential and force of this hybrid profile. Expressions for the mass and velocity dispersion, assuming isotropy, are also given. These spherical models may also prove appropriate for describing the dark matter distribution in haloes formed from ΛCDM cosmological simulations.  相似文献   

11.
We present V -band surface photometry and major-axis kinematics of stars and ionized gas of three early-type spiral galaxies, namely NGC 772, 3898 and 7782. For each galaxy we present a self-consistent Jeans model for the stellar kinematics, adopting the light distribution of bulge and disc derived by means of a two-dimensional parametric photometric decomposition. This allows us to investigate the presence of non-circular gas motions, and derive the mass distribution of luminous and dark matter in these objects.
NGC 772 and 7782 have apparently normal kinematics with the ionized gas tracing the gravitational equilibrium circular speed. This is not true in the innermost region (| r |≲8 arcsec) of NGC 3898, where the ionized gas is rotating more slowly than the circular velocity predicted by dynamical modelling. This phenomenon is common in the bulge-dominated galaxies for which dynamical modelling enables us to make the direct comparison between the gas velocity and the circular speed, and it poses questions about the reliability of galaxy mass distributions derived by the direct decomposition of the observed ionized-gas rotation curve into the contributions of luminous and dark matter.  相似文献   

12.
Flexion is the significant third-order weak gravitational lensing effect responsible for the weakly skewed and arc-like appearance of lensed galaxies. Here we demonstrate how flexion measurements can be used to measure galaxy halo density profiles and large-scale structure on non-linear scales, via galaxy–galaxy lensing, dark matter mapping and cosmic flexion correlation functions. We describe the origin of gravitational flexion, and discuss its four components, two of which are first described here. We also introduce an efficient complex formalism for all orders of lensing distortion. We proceed to examine the flexion predictions for galaxy–galaxy lensing, examining isothermal sphere and Navarro–Frenk–White (NFW) profiles and both circularly symmetric and elliptical cases. We show that in combination with shear we can precisely measure galaxy masses and NFW halo concentrations. We also show how flexion measurements can be used to reconstruct mass maps in two-dimensional projection on the sky, and in three dimensions in combination with redshift data. Finally, we examine the predictions for cosmic flexion, including convergence–flexion cross-correlations, and we find that the signal is an effective probe of structure on non-linear scales.  相似文献   

13.
The recent detection by Limousin et al. of five new strong lensing events dominated by galaxy cluster members in Abell 1689, and outside the critical regime of the cluster itself, offers a way to obtain constraints on the cluster mass distribution in a region inaccessible to standard lensing analysis. In addition, modelling such systems will provide another window on the dark matter haloes of galaxies in very dense environments. Here, it is shown that the boost in image separation due to the external shear and convergence from a smooth cluster component means that more numerous, less massive galaxies have the potential to create multiple images with detectable separations, relative to isolated field galaxies. This comes in addition to a potential increase in their lensing (source plane) cross-section. To gain insight into the factors involved and as a precursor to a numerical study using N -body simulations, a simple analytic model of a cluster at   z = 0.3  lensing background galaxies at   z = 2  is considered here. The fiducial model has cluster members with isothermal density profiles and luminosities L , distributed in a Schechter function (faint-end slope  ν=−1.25  ), related to their velocity dispersions σ via the Faber–Jackson scaling L ∝σ4. Just outside the critical regime of the cluster, the scale of galaxy-dominated image separations is significantly increased. Folding in the fact that less massive galaxies present a lower lensing cross-section, and that the cross-section can itself be enhanced in an external field leads to a factor of a few times more detected events relative to field galaxies. These values will be higher closer to the critical curve. Given that the events in Abell 1689 were detected over a very small region of the cluster where ACS data were available, this motivates the search for such events in other clusters.  相似文献   

14.
In this work we build a detailed dynamic model for an S0 galaxy possibly hosting a central massive dark object (MDO). We show that the photometric profiles and the kinematics along the major and minor axes, including the h 3 and h 4 profiles, imply the presence of a central MDO of mass     i.e. 0.3–2.8 per cent of the mass derived for the stellar spheroidal component. Models without MDO are unable to reproduce the kinematic properties of the inner stars and of the rapidly rotating nuclear gas.
The stellar population consists of an exponential disc (27 per cent of the light) and a diffuse spheroidal component (73 per cent of the light) that cannot be represented by a simple de Vaucouleurs profile at any radius. The M L ratios we found for the stellar components (3.3 and 6.6 respectively) are typical of those of disc and elliptical galaxies.  相似文献   

15.
We investigate how strong gravitational lensing in the concordance ΛCDM cosmology is affected by the stellar mass in galaxies. We extend our previous studies, based on ray tracing through the Millennium Simulation, by including the stellar components predicted by galaxy formation models. We find that the inclusion of these components greatly enhances the probability for strong lensing compared to a 'dark matter only' universe. The identification of the 'lenses' associated with strong-lensing events reveals that the stellar mass of galaxies (i) significantly enhances the strong-lensing cross-sections of group and cluster haloes and (ii) gives rise to strong lensing in smaller haloes, which would not produce noticeable effects in the absence of the stars. Even if we consider only image splittings ≳10 arcsec, the luminous matter can enhance the strong-lensing optical depths by up to a factor of 2.  相似文献   

16.
We conduct high-resolution collisionless N -body simulations to investigate the tidal evolution of dwarf galaxies on an eccentric orbit in the Milky Way (MW) potential. The dwarfs originally consist of a low surface brightness stellar disc embedded in a cosmologically motivated dark matter halo. During 10 Gyr of dynamical evolution and after five pericentre passages, the dwarfs suffer substantial mass loss and their stellar component undergoes a major morphological transformation from a disc to a bar and finally to a spheroid. The bar is preserved for most of the time as the angular momentum is transferred outside the galaxy. A dwarf spheroidal (dSph) galaxy is formed via gradual shortening of the bar. This work thus provides a comprehensive quantitative explanation of a potentially crucial morphological transformation mechanism for dwarf galaxies that operates in groups as well as in clusters. We compare three cases with different initial inclinations of the disc and find that the evolution is fastest when the disc is coplanar with the orbit. Despite the strong tidal perturbations and mass loss, the dwarfs remain dark matter dominated. For most of the time, the one-dimensional stellar velocity dispersion, σ, follows the maximum circular velocity, V max, and they are both good tracers of the bound mass. Specifically, we find that   M bound∝ V 3.5max  and     in agreement with earlier studies based on pure dark matter simulations. The latter relation is based on directly measuring the stellar kinematics of the simulated dwarf, and may thus be reliably used to map the observed stellar velocity dispersions of dSphs to halo circular velocities when addressing the missing satellites problem.  相似文献   

17.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   

18.
Lopsidedness is a common feature in galaxies, both in the distribution of light and in the kinematics. We investigate the kinematics of a model for lopsided galaxies that consists of a disc lying off-centre in a dark halo, and circling around the halo centre. We search for families of stable, closed, non-crossing orbits, and assume that gas in our galaxies moves on these orbits. Several of our models show strong lopsided gas kinematics, especially those in which the disc spins around its axis in a retrograde sense compared with its motion around the halo centre. We are able to reproduce the H  i velocity map of the kinematically lopsided galaxy NGC 4395.
The lopsidedness in our models is most pronounced in the models where the halo provides a relatively large fraction of the total mass at small radii. This may explain why the gas shows lopsidedness more frequently in late-type galaxies, which are dominated by dark matter. Surfaces of section show large regions of irregular orbits in the models where the halo density is low. This may indicate that these models are unstable.  相似文献   

19.
Dynamical studies of local elliptical galaxies and the Fundamental Plane point to a strong dependence of the total mass-to-light ratio ( M / L ) on luminosity with a relation of the form   M / L ∝ L γ  . The 'tilt'γ may be caused by various factors, including stellar population properties (metallicity, age and star formation history), initial mass function, rotational support, luminosity profile non-homology and dark matter (DM) fraction. We evaluate the impact of all these factors using a large uniform data set of local early-type galaxies from Prugniel & Simien. We take particular care in estimating the stellar masses, using a general star formation history, and comparing different population synthesis models. We find that the stellar M / L contributes little to the tilt. We estimate the total M / L using simple Jeans dynamical models, and find that adopting accurate luminosity profiles is important but does not remove the need for an additional tilt component, which we ascribe to DM. We survey trends of the DM fraction within one effective radius, finding it to be roughly constant for galaxies fainter than   M B∼−20.5  , and increasing with luminosity for the brighter galaxies; we detect no significant differences between S0s and fast- and slow-rotating ellipticals. We construct simplified cosmological mass models and find general consistency, where the DM transition point is caused by a change in the relation between luminosity and effective radius. A more refined model with varying galaxy star formation efficiency suggests a transition from total mass profiles (including DM) of faint galaxies distributed similarly to the light to near-isothermal profiles for the bright galaxies. These conclusions are sensitive to various systematic uncertainties which we investigate in detail, but are consistent with the results of dynamical studies at larger radii.  相似文献   

20.
It has recently been shown that galaxy formation models within the Λ cold dark matter cosmology predict that, compared to the observed population, small galaxies (with stellar masses  <1011 M  ) form too early, are too passive since   z ∼ 3  and host too old stellar populations at   z = 0  . We then expect an overproduction of small galaxies at   z ≳ 4  that should be visible as an excess of faint Lyman-break galaxies. To check whether this excess is present, we use the morgana galaxy formation model and grasil spectrophotometric  +  radiative transfer code to generate mock catalogues of deep fields observed with Hubble Space Telescope Advanced Camera for Surveys. We add observational noise and the effect of Lyman α emission, and perform colour–colour selections to identify Lyman-break galaxies. The resulting mock candidates have plausible properties that closely resemble those of observed galaxies. We are able to reproduce the evolution of the bright tail of the luminosity function of Lyman-break galaxies (with a possible underestimate of the number of the brightest i -dropouts), but uncertainties and degeneracies in dust absorption parameters do not allow to give strong constraints to the model. Besides, our model shows a clear excess with respect to observations of faint Lyman-break galaxies, especially of   z 850∼ 27 V   -dropouts at   z ∼ 5  . We quantify the properties of these 'excess' galaxies and discuss the implications: these galaxies are hosted in dark matter haloes with circular velocities in excess of 100 km s−1, and their suppression may require a deep rethinking of stellar feedback processes taking place in galaxy formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号