首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary. Rotational remanent magnetizations and partial rotational remanent magnetizations have been induced in four specimens using alternating magnetic fields of 55 mT maximum peak strength and 128 Hz, and speeds of rotation between 0.0016 and 0.4 rev s−1. Each partial rotational remanent magnetization ( PRRM ), was produced by rotating the specimen only at the maximum setting of the alternating field. The variation of PRRM with (a) speed of rotation, ω, and (b) total angle of rotation, θ, was investigated. In (a), PRRM fell slowly but steadily as ω increased; for (b) it rose sharply as θ increased up to 60° and reached a maximum for θ between 90° and 120°. Alternating field demagnetizations of PRRMs were performed with the specimen (a) at rest, and (b) rotating about an axis perpendicular to the field. Rotation significantly enhanced the demagnetization process. Variation of the time T , taken to remove the inducing alternating field produced no detectable effect in the case of PRRM , but affected the value of ω at which a given feature of the RRM —ω curve appeared, and the product θF(=ω T ) appears to be more important than either ω or T separately. Current theories on RRM can be used to explain some of the new experimental data on PRRM .  相似文献   

2.
Summary. Several tests have been carried out to investigate how the generation of rotational remanent magnetization depended on the frequency of the applied demagnetizing field. The equipment used is described. The investigation was carried out using two specimens, one being a synthetic specimen of magnetite, and the other a cylindrical rock sample. These specimens gave virtually identical behaviour with varying frequency, unlike the differing behaviours reported previously by Wilson & Lomax. For each of the separate alternating field frequencies used (ranging from 50 to 1210 Hz), as the rotational speed of each specimen was reduced from 0.1 cycle s−1, the corresponding rotational remanent magnetization increased to a maximum value when the rotational speed was in each case just a little greater than 0.01 cycle s−1, after which the rotational remanence decreases as the rotational speed decreases.  相似文献   

3.
The intensity of rotational remanent magnetization (RRM) acquired by single-domain greigite at a rotation frequency of 5 rps was combined with measurements of anhysteretic remanent magnetization (ARM) to calculate the effective biasing field ( Bg ) that produced the RRM. Samples of single-domain greigite had Bg values between -137 and -84 μT, and a MDFRRM of c. 80 mT. By contrast, a suite of natural and synthetic ferrimagnetic iron oxide samples, including single-domain magnetite and y Fe3O4 tape particles, acquired Bg values between -3 and -14 μT, and MDFRRM ranged between 43 and 68 mT (when RRM was acquired). Multidomain magnetite did not acquire a RRM. Bg values at 5 rps were calculated from previously published data for magnetite particles of different grain sizes, which revealed a minimum Bg value of -24 μT and a MDFRRM of 57 mT for the finest fraction (0.2-0.8 μm in diameter). In a geological example, measurements of Bg and MDFRRM were used to detect the presence of greigite in a 4 m long Late Weichselian sediment core. Variations in inclination, declination and the intensity of the natural remanent magnetization (NRM) correlate with changes in magnetic mineralogy.  相似文献   

4.
The acquisition of a freezing remanent magnetization (FRM) has been studied in controlled magnetic and thermal environments by successive freezing and thawing (−18 to +20°C) of samples of natural sediments from a frost polygon near Ny Ålesund, Spitsbergen. Successive freeze-thaw cycles cause a significant decrease in the intensity of the initially induced shock remanent magnetization (SRM), associated with directional trends towards the ambient magnetic field direction during the freezing phase. A slow increase in intensity commences after seven to 10 freeze-thaw cycles. The acquisition of a FRM in samples carrying an isothermal remanent magnetization shows a significantly smaller reduction in intensity and only minor directional variations. This result indicates that only a fraction of the magnetic grains in a natural sediment contributes to the natural remanent magnetization. Insignificant changes in lengths and directions of the principal susceptibility ellipsoid axes also indicate that magnetic fabric and remanent magnetization are carried by partly different populations of magnetic grains.
The acquisition of a FRM in nature has yet to be explored. If such a process is confirmed, however, it has the potential for obtaining age estimates of ancient thaw depths and for providing insights into material transport processes in frost polygons.  相似文献   

5.
Rayleigh hysteresis, as defined by the well-known Rayleigh relations, has been observed not only when magnetization of pyrrhotite-bearing KTB-samples is measured in parallel to a weak dc magnetic field, but also in experiments where field and measuring directions have been adjusted strictly perpendicularly to each other. Nine-tupels of independent Rayleigh hysteresis loops could thus be compiled. Their characteristic coefficients X ijk of initial susceptibility together with the Rayleigh loss coefficients αjk have been proved to determine completely the samples' weak-field magnetic anisotropy. Interpreting the coefficient matrices ( X ijk) and (αjk) as the tensor of initial susceptibility and the Rayleigh tensor, respectively, generalization of the isotropic Rayleigh relations in terms of corresponding tensor relationships has been suggested for the anisotropic case. Application to the KTB samples showed 3-D Rayleigh hysteresis measurements to be an excellent tool for rock magnetic analysis in terms of ore content and crystalline texture. In particular, a magnetocrystalline double texture of the basal planes of pyrrhotite precipitates and their [1120] directions of easy magnetization have been clearly detected. Surprisingly, the welt-known theorem α= const. X 2I, formulated by Néel (1942) for the isotropic case, has been found to hold true even in tensor generalization (αjk) = const ( X 2jk). To reach sufficient resolution for the measurements performed, a sensitive vibrating coil magnetometer (VCM) has been developed.  相似文献   

6.
We report on a detailed palaeomagnetic study of the Miocene Farellones volcanic formation in the Chilean Andes near Santiago (two sections, 37 sites, about 400 orientated cores). Petrological observations show evidence of low-grade metamorphism increasing downwards through the volcanic sequence. Optical observations of opaque minerals and magnetic experiments suggest that in many cases maghemitization is associated with hydrothermal alteration. However, thermal demagnetization data indicate that the low-grade metamorphism did not significantly modify the direction of the primary remanent magnetization recorded at the time of emplacement of the volcanic lava flows. Four intervals of polarity with two intermediate palaeodirections were observed in the ~650-m-thick composite section. According to the dispersion of flow average directions, palaeosecular variation was slightly larger than that observed in general during the Upper Cenozoic. The site mean directions obtained in this study differ significantly from the expected Miocene direction. Clockwise rotations of up to 20° of small blocks are probably associated with the deformation of the Andean Cordillera since middle Miocene times. Geomagnetic palaeointensity data were obtained, using the Thellier method, on 24 samples from eight distinct lava flows. The flow mean VDM varies from 1.4 to 4.0 × 1022 A m−2. Altogether, our data seem to suggest the existence of a relatively low geomagnetic field undergoing large fluctuations. Although a linear relationship was observed between the natural remanent magnetization and the thermal remanent magnetization acquired during the Thellier–Thellier experiments, undetected chemical alteration of the magnetic minerals during hydrothermalism may also explain the unusually low palaeointensity obtained.  相似文献   

7.
Rock magnetic parameters are often used to recognize variations in the original magnetic mineralogy and for normalizing purposes in palaeointensity studies. Incipient weathering, however, is shown to have a profound but partly reversible influence on the rock magnetic properties of the marls of the Early Pliocene Trubi formation in southern Sicily (Italy). The remanence in the marls resides in single-domain (SD) magnetite grains, but the remanent coercive force (Hcr) shows a strong variation and most values observed are anomalously high ( Hcr) range 36–188 mT).
The enhanced coercivities are attributed to stress in the magnetite grains induced by surface oxidation at low temperature. Upon heating to 150 °C a reduction of coercivities occurs that can be explained by a stress reduction as a result of a reduction of Fe2- gradient due to a higher diffusion rate at elevated temperature. After heating to 150 °C, coercivities are quite uniform throughout the outcrop and the values are characteristic of SD magnetite (Hcr range 30–38 mT). The bulk susceptibility increases by 4–24 per cent, and the isothermal remanent magnetization (IRM) decreases by 5–11 per cent. The increase in anhysteretic remanent magnetization (ARM) is large: 20–242 per cent. The magnitude of the changes is related to the degree of weathering.
Another effect of heating the marl samples to 150 °C is a substantial reduction of the coercivities of the secondary overprint in the natural remanent magnetization. After heating. separation of the secondary and primary components by alternating-field demagnetization is more efficient. The usual difficulties of thermal demagnetization above 300 °C may thus be avoided by a combination of moderate heating to 150 °C and subsequent alternating-field demagnetization.  相似文献   

8.
We study the crustal structure of eastern Marmara region by applying the receiver function method to the data obtained from the 11 broad-band stations that have been in operation since the 1999 İzmit earthquake. The stacked single-event receiver functions were modelled by an inversion algorithm based on a five-layered crustal velocity model to reveal the first-order shear-velocity discontinuities with a minimum degree of trade-off. We observe crustal thickening from west (29–32 km) to east (34–35 km) along the North Anatolian Fault Zone (NAFZ), but we observe no obvious crustal thickness variation from north to south while crossing the NAFZ. The crust is thinnest beneath station TER (29 km), located near the Black Sea coast in the west and thickest beneath station TAR (35 km), located inland in the southeast. The average crustal thickness and S -wave velocity for the whole regions are  31 ± 2  km and  3.64 ± 0.15 km s−1  , respectively. The eastern Marmara region with its average crustal thickness, high heat flow value (101 ± 11 mW m−2) and with its remarkable extensional features seems to have a Basin and Range type characteristics, but the higher average shear velocities (∼3.64 km s−1) and crustal thickening from 29 to 35 km towards the easternmost stations indicate that the crustal structure shows a transitional tectonic regime. Therefore, we conclude that the eastern Marmara region seems to be a transition zone between the Marmara Sea extensional domain and the continental Anatolian inland region.  相似文献   

9.
We use teleseismic three-component digital data from the Trabzon, Turkey broadband seismic station TBZ to model the crustal structure by the receiver function method. The station is located at a structural transition from continental northeastern Anatolia to the oceanic Black Sea basin. Rocks in the region are of volcanic origin covered by young sediments. By forward modelling the radial receiver functions, we construct 1-D crustal shear velocity models that include a lower crustal low-velocity zone, indicating a partial melt mechanism which may be the source of surfacing magmatic rocks and regional volcanism. Within the top 5 km, velocities increase sharply from about 1.5 to 3.5 km s−1. Such near-surface low velocities are caused by sedimentation, extending from the Black Sea basin. Velocities at around 20 km depth have mantle-like values (about 4.25 km s−1 ), which easily correlate to magmatic rocks cropping out on the surface. At 25 km depth there is a thin low-velocity layer of about 4.0 km s−1. The average Moho velocity is about 4.6 km s−1, and its depth changes from 32 to 40 km. Arrivals on the tangential components indicate that the Moho discontinuity dips approximately southwards, in agreement with the crustal thickening to the south. We searched for the solution of receiver functions around the regional surface wave group velocity inversion results, which helped alleviate the multiple solution problem frequently encountered in receiver function modelling.
Station TBZ is a recently deployed broadband seismic station, and the aim of this study is to report on the analysis of new receiver function data. The analysis of new data in such a structurally complex region provides constraining starting models for future structural studies in the region.  相似文献   

10.
A newly developed field distribution measuring system based on a high- T c SQUID has been employed in the study of magnetic mineral distribution in several Permian sedimentary rocks. The instrument consists of a small, 1.4×1.4 mm sized YBaCu-oxide SQUID magnetic field sensor that is operated in a thin-walled dewar, so that the sample's surface, at room temperature, can be scanned at a distance of only ∼1.5 mm. The samples were subjected to a saturation remanence perpendicular to the surface and the scanning measurements in zero field reveal that the magnetization might be carried by only a small part of a sample, in one case associated with secondary oxide phases. High-resolution magnetic scans can aid in the interpretation of the magnetic remanence acquisition process.  相似文献   

11.
Summary. Palaeomagnetic investigations were carried out on nine lava flows around the Dhar region, which constitute the northern part of the Deccan traps. The stability of remanent magnetism of these specimens was analysed by an alternating magnetic field, thermal demagnetization and memory tests. Six flows exhibited characteristic components of magnetization, with a mean direction of D =143°, I =+46° ( K = 107.1, α95=5.5°). This gives a VGP located at 29° N, 67° W (δp=4.5°, δm= 7.0°). The lower site with normal magnetization and the upper five sites with reverse magnetization indicate a geomagnetic field reversal during the initial phases of Deccan volcanism in the Early Tertiary period. A rapid northward migration of about 18° in latitude and a simultaneous anticlockwise rotation of 37° is calculated for the subcontinent.  相似文献   

12.
The C -response connects the magnetic vertical component and the horizontal gradient of the horizontal components of electromagnetic variations and forms the basis for deriving the conductivitydepth profile of the Earth. Time-series of daily mean values at 42 observatories typically with 50 years of data are used to estimate C -responses for periods between 1 month and 1  yr. The Z : Y method is applied, which means that the vertical component is taken locally whereas the horizontal components are used globally by expansion in a series of spherical harmonics.
In combination with results from previous analyses, the method yields consistent results for European observatories in the entire period range from a few hours to 1  yr, corresponding to penetration depths between 300 and 1800  km.
1-D conductivity models derived from these results show an increase in conductivity with depth z to about 2  S  m-1 at z =800  km, and almost constant conductivity between z =800 and z =2000  km with values of 310  S  m-1, in good agreement with laboratory measurements of mantle material. Below 2000  km the conductivity is poorly resolved. However, the best-fitting models indicate a further increase in conductivity to values between 50 and 150  S  m-1.  相似文献   

13.
Repeated laboratory-induced weak mechanical shocking ( c .  0.57  kg  m  s1 ) of marine sandstone samples showing drilling-induced remanence, from commercial bore cores from the North Sea and Prudhoe Bay, causes increases in their low-field susceptibility ( χ ) and their ability to acquire an isothermal remanent magnetization (IRM). These enhancements are reduced by some 20 per cent by AF demagnetization in 100  mT. Doubling the intensity of the shock doubles the susceptibilities and IRMs acquired. The susceptibility increase ceases after 300 to 400 shocks for the North Sea samples and 20 to 30 shocks for those from Prudhoe Bay, while the IRM saturates after 800–1000 and 30–50 shocks respectively. Continental, haematite-bearing sandstones from commercial bore cores with no drilling-induced remanence subjected to the same shocks do not show these effects. Differences in the magnetic mineralogy of shocked and unshocked marine samples suggest that the magnetic enhancement is predominantly due to the creation of pyrrhotite by shock-induced irreversible crystallographic changes in iron-bearing sulphides. When shocked during commercial drilling, these new ferromagnetic minerals acquire strong chemical (crystalline) remanences, associated with a wide spectrum of grain sizes, in the magnetic field of the drill string, and these are resistant to both thermal and AF demagnetization. Similar processes are likely in any situation involving the shock of physically metastable iron-bearing minerals, particularly anoxic sediments. A 5  cm non-magnetic collar between the drill stem and crown should drastically reduce the magnetic intensity of this effect under commercial conditions, but would not prevent its occurrence.  相似文献   

14.
In order to investigate the velocity structure, and hence shed light on the related tectonics, across the Narmada–Son lineament, traveltimes of wide-angle seismic data along the 240 km long Hirapur–Mandla profile in central India have been inverted. A blocky, laterally heterogeneous, three-layer velocity model down to a depth of 10 km has been derived. The first layer shows a maximum thickness of the upper Vindhyans (4.5 km s−1 ) of about 1.35 km and rests on top of normal crystalline basement, represented by the 5.9 km s−1 velocity layer. The anomalous feature of the study is the absence of normal granitic basement in the great Vindhyan Graben, where lower Vindhyan sediments (5.3 km s−1 ) were deposited during the Precambrian on high-velocity (6.3 km s−1 ) metamorphic rock. The block beneath the Narmada–Son lineament represents a horst feature in which high-velocity (6.5 km s−1 ) lower crustal material has risen to a depth of less than 2 km. South of the lineament, the Deccan Traps were deposited on normal basement during the upper Cretaceous period and attained a maximum thickness of about 800 m.  相似文献   

15.
Summary. A simple high pressure cell suitable for chemical demagnetization of low porosity sediments is described. It requires no external pumps and components of chemical remanent magnetization (CRM) are progressively removed by HC1 leaching under pressures of 52–60 kg cm−2.  相似文献   

16.
Summary. These experiments support Stephenson's predictions that partial anhysteretic remanent magnetizations produced in rotating samples deviate from the steady field direction, which is collinear with the rotation axis, by amounts depending on the angle, between the alternating magnetic field axis and the rotation axis. A similar effect was observed for partial rotational remanent magnetizations. Possible differences between the two remanence types were noted.  相似文献   

17.
Summary. Recent experimental work by Edwards has demonstrated that rotational remanent magnetization (RRM) is not a maximum when the alternating field is normal to the rotation axis of the sample (a rock) but is greatest when the angle is about 75°. Experiments involving the production of ARM during sample rotation gave a similar result with a maximum at about 60°. These results are explained here in terms of the response of an isotropic assembly of identical single-domain particles to a strong alternating magnetic field.  相似文献   

18.
The time and temperature stability of various types of magnetic remanence has been measured in pottery samples containing magnetite and in a clay sample containing manganese ferrite. The time decay of rotational remanent magnetization (RRM), anhysteretic remanent magnetization (ARM) and a low-field isothermal remanent magnetization (IRM) has been measured. While the decay of the last two remanences is easily measurable at about 2 and 19 per cent per decade of time, respectively, the decay of RRM is too small to be measured, being less than about 0.1 per cent per decade of time. Thermal demagnetization of thermoremanent magnetization (TRM), ARM and RRM indicates that RRM is also the most thermally stable. The implications of these experiments are that rocks which exhibit gyromagnetic effects such as RRM contain highly stable particles and therefore are likely to be most suitable for palaeomagnetism.  相似文献   

19.
Glaciation and deglaciation in Fennoscandia during the last glacial cycles has significantly perturbed the Earth's equilibrium figure. Changes in the Earth's solid and geoidal surfaces due to external and internal mass redistributions are recorded in sequences of ancient coastlines, now either submerged or uplifted, and are still visible in observations of present‐day motions of the surface and glacially induced anomalies in the Earth's gravitational field. These observations become increasingly sophisticated with the availability of GPS measurements and new satellite gravity missions.
Observational evidence of the mass changes is widely used to constrain the radial viscosity structure of the Earth's mantle. However, lateral changes in earth model properties are usually not taken into account, as most global models of glacial isostatic adjustment assume radial symmetry for the earth model. This simplifying assumption contrasts with seismological evidence of significant lateral variations in the Earth's crust and upper mantle throughout the Fennoscandian region.
We compare predictions of glacial isostatic adjustment based on an ice model over the Fennoscandian region for the last glacial cycle for both radially symmetric and fully 3‐D earth models. Our results clearly reveal the importance of lateral variations in lithospheric thickness and asthenospheric viscosity for glacially induced model predictions. Relative sea‐level predictions can differ by up to 10–20 m, uplift rate predictions by 1–3 mm yr−1 and free‐air gravity anomaly predictions by 2–4 mGal when a realistic 3‐D earth structure as proposed by seismic modelling is taken into account.  相似文献   

20.
It is extremely valuable to study historic lava flows where the geomagnetic field at their time of extrusion is well known. In this study, two vertical sections, 16 m apart, have been sampled from the approximately 1 m thick 1960 Kilauea lava flow, Hawaii. Variations are seen in the rock-magnetic and palaeomagnetic properties between and within the two sections, indicating that there are small-scale lateral and vertical variations in the lava flow. The two sections showed different responses to microwave palaeointensity analysis. Section H6001 generally gave ideal linear behaviour on plots of natural remanent magnetization (NRM) lost against microwave-induced thermoremanent magnetization (TM RM) gained, whilst the majority of samples from H6002 showed anomalous two-slope behaviour. When all plots were interpreted by taking the best-fitting line through all points, the flow mean intensity for H6001 was 31.6 ± 3.6 μT and that for H6002 was 37.1 ± 6.4 μT, compared with the expected intensity of 36 μT. Additional historic flows need to be studied in order to ascertain whether this behaviour is typical of all lava, and whether it is best to always interpret NRM lost/TM RM gained plots by taking the line of best fit regardless of shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号