共查询到2条相似文献,搜索用时 1 毫秒
1.
Geomorphic processes operate at multiple spatio-temporal scales and different levels of hierarchy. It is therefore necessary to understand the linkages of landscapes across various scales and levels to gain insights into their interactions and feedbacks. Connectivity is an emergent property of the hydro-geomorphic systems, and it is gradually evolving into a unifying concept in geomorphology. The connectivity approach has the potential to be applied extensively to diverse hydro-geomorphic systems of India to understand their complexity as well as for designing effective management practices for river systems and wetlands, optimizing water resources for agriculture, and monitoring and restoration of habitats. Studies on connectivity, particularly in geomorphic context, have been growing steadily in India, albeit at a much slower pace compared to the global trends. This article undertakes a brief overview of the global developments particularly in terms of providing some clarity among the different types of geomorphic connectivity and their inter-relationships and feedbacks. We then take stock of the connectivity research in India in recent years as applied in different hydrogeomorphic systems across the country. We utilize a number of Indian case studies to illustrate the important developments and applications of connectivity concepts, and also present future perspective of this important field with special relevance to India. © 2020 John Wiley & Sons, Ltd. 相似文献
2.
本文利用误差分布和概率统计分析改进了波速比计算方法.对于震源位置相对集中的震群活动,对台站震相到时进行两次差分,通过对差分后的震相数据对进行二维高斯分布拟合,可以稳健地估计震群活动震源区波速比.该方法充分利用了不同台站Pg、Sg到时差的所有信息,其优势是不需要地震事件的震源位置,并且不依赖震源区以外的速度变化,有效消除了震源区到台站的传播路径效应的影响;相对于传统的平均波速比,本文方法得到的震源区波速比,更能真实地反映震源区介质的性质.我们将该方法应用到2013-2016年的乳山震群,结果显示:震源区波速比的变化与震群活动过程密切相关,波速比的变化反映了序列活动的阶段性特征.
相似文献