首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
利用常规观测资料和NCEP 2.5°×2.5°网格再分析资料,对2009年4月16日天山翻山大风的物理机制进行了诊断分析.结果表明:高空急流、垂直环流共同作用是高空动量下传的重要动力机制,500~850 hPa较深厚的强冷平流输送是翻山大风形成的热力因子.同时得到天山翻山大风一些有益的预报指标.  相似文献   

2.
2014年冬季阿图什2次灾害性大风对比分析   总被引:1,自引:0,他引:1  
2014年11月下旬和12月上旬,南疆西部的克州地区出现了两次灾害性大风天气,12月8日克州阿图什的大风突破建站以来的历史极值。本文利用常规观测资料和NCEP 1°×1°的6小时再分析资料,对这两次大风天气成因进行了对比分析。结果表明:秋末冬初南北支高空急流震荡汇合时,汇合处易出现西北大风;高空斜压槽和强锋区、地面强冷高压及南疆西部热低压是发生此类大风天气的影响系统;高空中期环流形势、冷空气强度、动量下传决定了大风的类型与强度;温度平流、垂直运动的强度及配置与大风强度关系密切。  相似文献   

3.
利用中国气象局MICAPS地面、高空等常规观测资料及欧洲中心ERA-Interim的0.25°(纬度)×0.25°(经度)逐6 h再分析资料,对2015年11月5日至7日影响北京、河北的一次降雪过程的环流形势和动热力物理量进行了诊断分析,揭示了降雪特征及其形成原因。环流形势分析发现,此次降雪是在高空两槽一脊叠加短波槽活动天气背景下的“回流型”降雪。500 hPa有西伯利亚脊的发展和内蒙古地区气旋性涡旋及其向南发展出的弱槽,使得偏北冷空气与西南暖气流在河北地区相遇,伴随低层700 hPa的低涡发展,造成了此次降雪天气。500 hPa多小槽波动东移,使得雨雪天气维持较长时间;700 hPa受偏南暖湿气流影响,850 hPa为偏东风,地面高压底部偏东风配合倒槽,有较好的上升运动和水汽输送条件;高湿的大气环境条件和低层水汽辐合及抬升为降雪发生提供了充沛的水汽;高低空急流的形成,与散度场、涡度场和垂直速度场的高低空耦合配置,为降雪天气的发生创造了动力条件。  相似文献   

4.
利用常规观测资料和NCEP 2.5°×2.5°网格再分析资料,对2009年4月16日天山翻山大风的物理机制进行了诊断分析。结果表明:高空急流、垂直环流共同作用是高空动量下传的重要动力机制,500~850hPa较深厚的强冷平流输送是翻山大风形成的热力因子。同时得到天山翻山大风一些有益的预报指标。  相似文献   

5.
利用常规地面气象观测资料和NCEP再分析资料,对2017年2月20—21日浙江省中西部地区的一次冷空气大风天气过程进行分析。结果表明:西伯利亚冷高压与东亚大槽共同作用形成的强气压梯度是此次大风天气过程的重要成因;高空槽槽后动量下传是此次区域性大风超出一般冷锋大风强度的关键因素;200 hPa高空西风急流入流区的辐合下沉运动与冷锋前的上升运动叠加形成的次级环流是此次大风天气出现的增强条件。  相似文献   

6.
甘肃河西地区一次强寒潮天气个例诊断分析   总被引:1,自引:0,他引:1  
2008年4月19~20日,受西伯利亚东移南下的强冷空气影响,河西地区出现了自2001年以来最强的1次寒潮天气.利用MICAPS资料分析了这次强寒潮爆发时的环流形势演变特征.同时采用NCEP/NCAR 2.5°×2.5°每天4次再分析资料,计算了60~105°E、35~60°N区域内,4月15日08时~20日08时300 hPa高空急流,500 hPa涡度、温度平流、垂直速度,700 hPa水汽通量散度等物理量.结果表明:此次强寒潮的爆发与高空急流在东移南下过程中逐渐加强有关,500 hPa正涡度区与槽前锋区配合一致,更有利于引导强冷空气东移南下.低层强冷平流对地面加压降温作用至关重要,垂直速度与大气层结稳定度有关.700 hPa水汽通量散度场分布特征对寒潮天气条件下的降水形成有明显影响,水汽通量散度极小值区域均有降水,最大值区域无降水而有沙尘天气.  相似文献   

7.
急流次级环流对局地持续强风暴天气的作用   总被引:7,自引:4,他引:7       下载免费PDF全文
刘勇 《气象科技》2005,33(3):214-217
利用天气图、雷达回波和地面风场资料对1994年6月28日陕西中部发生的一次罕见的长时间局地大风、冰雹、暴雨天气进行诊断分析。结果表明:这次过程出现在500hPa槽前和700hPa低涡暖式切变线附近;强风暴发生在高空急流入口区右侧辐散和低空急流左前侧辐合重叠区,与地面中尺度气旋活动紧密相关;证实了地面中尺度气旋是由高低空急流耦合产生的次级环流引起,次级环流控制着中尺度系统发展变化。  相似文献   

8.
利用NCEP1°×1°再分析资料,对新疆夏季两次塔什干低涡天气过程进行对比分析,从天气尺度环流系统配置、动力和水汽输送的角度探讨造成南疆不同降水强度的塔什干低涡特征差异。结果表明:当南亚高压中心位于70°E,南疆位于200 hPa急流轴出口辐散区,500 hPa塔什干低涡东移携带强西南气流时,700 hPa盆地有显著东风急流,偏西地区中低层切变辐合长时间维持,同时通过接力输送的阿拉伯海水汽与中低层东风急流携带的水汽强烈辐合,导致大范围暴雨,高层正MPV1、负MPV2向下伸展,中低层不稳定性、斜压性增强,配合700 hPa以下负MPV1、正MPV2激发垂直涡度增长,对流性降水加强;当南亚高压中心始终维持偏东(90°E),南疆位于200 hPa急流轴上,500 hPa里海脊和新疆东部高压脊势力相当时,塔什干低涡减弱为槽影响南疆,700 hPa南疆盆地东风气流弱且位置偏西,南疆地区无明显高层辐散、中低层切变辐合,不利于垂直上升运动的发展和水汽的集中辐合,难以造成显著降水。  相似文献   

9.
利用自动站小时监测资料、常规与加密观测资料、NCEP/NCAR再分析资料(0.25°×0.25°)、FY-2G卫星相当黑体亮温(TBB)资料,分析2017年2月19日至20日天山两麓的极端暴雪天气过程。结果表明: (1)此次过程发生在500 hPa南欧脊衰退、乌拉尔低槽与中亚偏南低槽先结合、后分段东移进入的环流背景下,天山北麓暴雪高低空系统呈典型后倾结构,天山南麓暴雪形势为典型“东西夹攻”型。(2)影响天山北麓暴雪的低空西北急流和影响天山南麓暴雪的低空偏东急流均为冷湿气流,西北急流风速的增大比雪强的增强提早12h左右,偏东急流比降雪提前6h出现。(3)主要水汽通道在850~400 hPa,水汽通量进入新疆后,850~700 hPa偏西水汽输送强于600~400 hPa西南水汽输送,水汽辐合主要在850~700 hPa。(4)乌鲁木齐降雪前位势不稳定性加强,沙雅降雪前有明显对流不稳定,两暴雪中心均有地形强迫强化产生并维持的中尺度垂直上升支和次级环流圈,而沙雅系统性动力作用小于乌鲁木齐的。(6)中尺度云团是造成天山两麓暴雪产生的最直接的影响系统。  相似文献   

10.
利用常规地面、高空观测资料和NECP逐日4次 1?x 1?网格再分析资料,对2014年5月22日发生在南疆西部地区的一次翻山型大风天气过程的物理机制进行了诊断分析。结果表明:本次大风是高压脊衰退,冷空气沿西北路径爆发产生的大风天气过程;喀什站与乌鲁木齐、塔什干指标站气压差有明显的指示意义:喀什站与乌鲁木齐站气压差由负转正达到 3hPa左右,与塔什干站气压差达到最大-26hPa左右,此时可作为出现全区性大风的参考时间节点,当喀什站与乌鲁木齐站气压差扩大到-15hPa左右,维持稳定,与塔什干气压差减小至-13hPa左右,可作为全区性大风结束的参考时间节点;同时大风出现及结束时间节点在地理上呈现阶梯性变化特征;高空急流、垂直速度圈、变压中心以及冷锋的位置变化相互制约影响;高空急流、垂直环流圈的共同作用是高空动量下传重要动力机制;低层南疆盆地的辐合、帕米尔高原的辐散加剧了南疆盆地上升减压和帕米尔高原中低层的下沉加压,是又一动力强迫机制;中低层300hPa-850hPa较深厚的强冷平流输送,盆地热低压发展是翻山大风形成的热力因子。  相似文献   

11.
利用NCEP-FNL资料、FY-4卫星红外云图资料、雷达资料和自动站资料,对2021年4月15日渤海西岸由大尺度冷空气和中尺度对流系统共同作用形成的极端大风进行特征和成因分析。结果表明:(1)FY-4卫星红外云图云顶亮温表现出指状特征,雷达反射率因子表现为两个弱回波带在渤海西岸合并加强为一条带状回波,随着系统东移由带状回波演变为弓状回波。(2)上冷下暖的不稳定层结为锋面触发对流提供有利环境条件,在径向速度图上出现较大范围速度模糊和中层径向辐合。(3)此次大风过程具有雷暴大风和冷空气大风混合的大风特征,大风成因是由大尺度冷空气产生的动量下传、大尺度变压风、梯度风以及中尺度雷暴冷池出流共同导致的。  相似文献   

12.
文中从天气气候背景及天气学、动力诊断等方面 ,分析 2 0 0 0年秋、冬季河西大风和沙尘暴天气的形成原因 ,分析结果表明 ,几次大风、沙尘暴过程都是在高空 5 0 0hPa环流形势由纬向环流向径向环流调整的过程中 ,西西伯利亚强冷空气沿西北气流迅速南下 ,在蒙古地面热低压强烈发展的有利的热力和动力条件下发生的。同时 ,今年秋、冬季河西气温明显偏高 ,降水偏少以及河西地区特殊的地理环境 ,加剧了大风和沙尘暴天气的出现频次和强度。通过分析 ,初步总结出了此类天气的预报着眼点。  相似文献   

13.
一次春季冷锋过境引起的大风天气分析   总被引:1,自引:0,他引:1  
利用常规探测资料、地面加密观测资料及NCEP再分析资料,对2009年4月15日新乡罕见大风天气的天气形势及物理量场特征进行了诊断分析。结果表明:西伯利亚强冷空气南下与华北低压发展共同造成的强气压梯度、高低空强的冷平流是造成此次强风的主要原因;地面冷锋前的上升运动与高空急流入口区次级环流上升气流的叠加,为深对流发展提供了深厚的垂直环流发展条件;高空西风急流配合适合的垂直环流,产生动量下传,是超出一般强度的冷空气大风产生的原因;ECMWF和T639数值预报产品均成功地预报出了此次强风过程。  相似文献   

14.
利用常规站资料、ERA5资料(0.25°×0.25°)以及务川雷达和铜仁新一代多普勒天气雷达资料对2022年4月24日发生在贵州铜仁市多个区(县)的一次雷暴大风过程进行分析,结果表明:(1)此次天气过程是发生上干下湿的不稳定环境中,高空槽、南支槽、低涡、切变线和地面辐合线都为此次强对流天气过程提供了触发条件。(2)大的DCAPE值、中层中等强度的垂直风切变和低层较强的垂直风切变以及较大的850hPa与500hPa的温差都是利于大风产生的条件。(3)大风常常出现在弓形回波前部突出处,高悬的强回波、弱回波区、高的回波顶高以及径向速度中出现逆风区和强并且深厚的中层径向辐合等都是出现大风天气的雷达产品特征。  相似文献   

15.
利用常规地面高空观测资料、地面自动站资料、NCEP 1°×1°再分析资料、卫星云图、多普勒天气雷达资料等,对2017年秋季发生在河北省中部的一次由飑线引发的雷暴大风天气进行分析。结果表明:本次雷暴大风过程发生在高空冷涡底部,槽后冷空气与低层暖平流叠加配合地面冷锋的有利天气背景下,由飑线回波直接造成。环境条件中水汽和热力达到了中国华北地区产生强雷暴大风的平均值,大气温度直减率和垂直风切变比夏季更适宜,但能量不如夏季充足。飑线的强度、形态与夏季产生雷暴大风的雷达回波特征无异,但依据低层径向速度大值区预警秋季飑线大风需提高阈值。秋季飑线过程中地面同样伴随风场辐合、雷暴高压等中尺度系统,冷池密度流作用有利于地面大风产生。  相似文献   

16.
利用新疆天山山区及其以北地区(北疆)45个气象站1961-2010年冬季逐日最低气温资料,提出了45站低温日标准和区域性持续性低温事件的定义,并分析了持续性低温事件的时空分布和变化特征,研究了低温事件的年代际变化环流差异特征、大尺度环流背景、冷空气影响路径及强度特征。结果表明:(1) 低温日阈值呈东北向西南升高的分布趋势,低温日阈值最小值分布于准噶尔盆地和新疆北部阿勒泰地区,阈值为-34~-30℃,而西部伊犁地区和天山山区低温日阈值为-24~-20℃;(2) 1961-2010年出现35次大范围持续性低温事件,1月和2月发生频次均为0.29次/年,12月为0.14次/年;低温事件持续时间为5~25 d,其中超过10 d有16次,5~9 d有19次。持续性低温事件发生频率呈年际和年代际显著减少趋势,但强度无显著变化趋势;(3) 北半球大范围环流异常造成新疆持续低温事件,以经向环流异常为主,根据冷空气影响路径可分为4类:西西伯利亚横槽、中西伯利亚低槽东灌、北风带和西北风带、北脊南槽(涡),这4类冷空气影响路径表现为500 hPa冷空气从极地或西伯利亚以超极地、西北和偏东路径进入新疆后,-32℃冷空气南压位于北疆地区,海平面气压场同时表现为蒙古高压盘踞欧亚大陆,高压中心达1045 hPa以上且位于阿勒泰山地区,1035 hPa冷高压控制北疆地区,这种环流配置造成新疆持续性低温事件。  相似文献   

17.
郁淑华  高文良 《大气科学》2017,41(4):831-856
本文利用NCEP/NCAR-FNL再分析资料、历史天气图、青藏高原低涡切变线年鉴,通过分析1998~2015年持续高原涡影响西南涡结伴而行(简称两涡伴行)过程的活动形式,并对不同活动形式的个例进行了环境场与位涡分析,得出了不同活动形式两涡伴行的环境场特征,揭示了冷空气活动、200 hPa急流对不同活动形式的两涡伴行的影响原因。结果表明:(1)两涡伴行有三种活动形式,它们是高原涡诱发西南涡、高原涡与西南涡耦合以及同一天气系统下两涡,其中以高原涡诱发西南涡的活动形式占多数。(2)两涡伴行的500 hPa环境场主要是40°N以北东亚环流经向度不强,纬向气流主导,受500 hPa低槽、冷空气活动的影响;200 hPa环境场主要与200 hPa急流的强度、距急流核距离、在急流两侧的位置密切相关;不同活动形式的西南涡上空200 hPa、500 hPa环境场特征是有差别的。(3)受500 hPa低槽、冷空气影响的两涡伴行中的西南涡的生成是通过500 hPa高位涡空气伸入西南涡上空,造成西南涡上空斜压不稳定所至;在西南涡上空500 hPa斜压不稳定增强且具有较强的斜压不稳定时西南涡加强;200 hPa西南风急流影响高原涡诱发或耦合、加强西南涡是分别在高空高位涡下传影响到高原涡与西南涡上空、西南涡的情况下实现的,同一天气系统下,高空高位涡下传只影响高原涡,而未影响西南涡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号