首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N. Seehafer 《Solar physics》1986,105(2):223-235
The field lines of closed magnetic structures above the photosphere define a mapping from the photosphere to itself. This mapping is discontinuous, and the field line connectivity to the boundary can change discontinuously in response to continuous changes of field strength and direction, if field lines either end in a singular point of the field or are tangential to the photosphere at one end. Whereas the general existence of singular points is questionable, the field has typically a cell structure due to the presence of segments of the zero line of the photospheric longitudinal field on which the transversal field is directed from negative (pointing into the Sun) to positive fields. The cell boundaries are made up of field lines which all touch the photosphere on one of these line segments. Within each of the cells the field line mapping is continuous. When during a slow evolution a substantial part of a coronal loop or of an arcade has passed from one cell into another a fast dynamic instability may set in which was previously prevented by the anchoring of field lines in the dense photosphere.  相似文献   

2.
Zhixing Mei  Jun Lin   《New Astronomy》2008,13(7):526-540
The flare-related, persistent and abrupt changes in the photospheric magnetic field have been reported by many authors during recent years. These bewildering observational results pose a challenge to the current flare theories in which the photospheric magnetic field usually remains unchanged in the eruption. In this paper, changes in the photosphere magnetic field during the solar eruption are investigated based on the catastrophe model. The results indicate that the projection effect is an important source that yields the change in the observed photospheric magnetic field in the line-of-sight. Furthermore one may observe the change in the normal component of magnetic field if the spectrum line used to measure the photospheric magnetic field does not exactly come from the photospheric surface. Our results also show that the significance of selecting the correct spectral lines to study the photospheric field becomes more apparent for the magnetic configurations with complex boundary condition (or background field).  相似文献   

3.
Skinning process stability of the magnetic field in homogeneous plasma is studied. A set of magnetohydrodynamic equations is used. Dependence of electrical conductivity on the plasma parameters and radiation intensity in grey-body approximation are taken into account. The investigation is carried out on the model problems in linear approximation and by means of numerical solution of MHD equations. Threshold of stability and critical gradient of magnetic field in skin-layer are obtained. The model of the phenomenon proposed in the paper indicates on overheating instability of plasma with electric current in large gradient magnetic field zones as a possible trigger mechanism of solar flare origin.  相似文献   

4.
The detection of magnetic field variations as a signature of flaring activity is one of the main goals in solar physics. Past efforts gave apparently no unambiguous observations of systematic changes. In the present study, we discuss recent results from observations that scaling laws of turbulent current helicity inside a given flaring active region change in response to large flares in that active region. Such changes can be related to the evolution of current structures by a simple geometrical argument, which has been tested using high Reynolds number direct numerical simulations of the MHD equations. Interpretation of the observed data within this picture indicates that the change in scaling behavior of the current helicity seems to be associated with a topological reorganization of the footpoint of the magnetic field loops, namely with the dissipation of small scales structures in turbulent media.  相似文献   

5.
Based on a topological magnetic field model for active region (AR) 8086 observed on September 15–21, 1997, we calculate the evolution of the magnetic flux imbalance during its disk passage. We have established possible causes of the observed imbalance. Using model ARs produced by perfectly balanced magnetic field sources as examples, we show that even in this case, the observed imbalance can reach a significant value, depending on the AR size and location. The peculiar properties of the magnetic field imbalance in ARs predicted by the topological model must be taken into account when present-day magnetographic observations of the Sun are interpreted.  相似文献   

6.
By fitting a new type of polarization detector after the entrance slit of a solar spectrograph, the two dimensional magnetic field of solar active regions can be obtained. Not only the field intensity, but also the longitudinal map is obtained quickly. The simultaneous observation of a few lines will also provide data on the structure of the magnetic tubes etc.  相似文献   

7.
A statistical investigation has been made about the flare-process in relation to the photospheric magnetic field and configuration. It is understood from the analysis that the flare energy bears a linear relationship with the rate of change of flux of the longitudinal component of photospheric magnetic field.  相似文献   

8.
In the present paper, in terms of the theory about the mechanisms of radio radiation, we have briefly classified, induced, summarized and reviewed the methods for deriving the magnetic field in the solar (radio) active regions. This revised version was published online in July 2006 with corrections to the Cover Date. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
A large equatorial coronal streamer observed in the outer corona (3R ) grew in brightness and size during successive limb passages between October 6, 1973 and January 10, 1974 (solar rotations 1606–1611). Unlike previous studies of streamers and their photospheric associations, no definite surface feature could be identified in the present case. This suggests that the streamer is associated with the large scale photospheric magnetic field. Comparison of the streamer growth with observed underlying photospheric magnetic flux changes indicated that as the streamer increased in brightness, areal extent, and density, the photospheric magnetic flux decreased. Three possible explanations for the streamer's growth are presented; the conceptually simplest being that the decrease in photospheric field results in an opening of the flux tubes under the streamer which permits an increased mass flux through the streamer.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
11.
Average (over longitude and time) photospheric magnetic field components are derived from 3 Stanford magnetograms made near the solar minimum of cycle 21. The average magnetograph signal is found to behave as the projection of a vector for measurements made across the disk. The poloidal field exhibits the familiar dipolar structure near the poles, with a measured signal in the line Fe i 5250 Å of 1 G. At low latitudes the poloidal field has the polarity of the poles, but is of reduced magnitude ( 0.1 G). A net photospheric toroidal field with a broad latitudinal extent is found. The polarity of the toroidal field is opposite in the nothern and southern hemispheres and has the same sense as subsurface flux tubes giving rise to active regions of solar cycle 21.These observations are used to discusse large-scale electric currents crossing the photosphere and angular momentum loss to the solar wind.Now at Kitt Peak National Observatory, Tucson, Ariz. 85726, U.S.A.  相似文献   

12.
The large-scale photospheric magnetic field has been computed by allowing observed active region fields to diffuse and to be sheared by differential rotation in accordance with the Leighton (1969) magnetokinematic model of the solar cycle. The differential rotation of the computed field patterns as determined by autocorrelation curves is similar to that of the observed photospheric field, and poleward of 20° latitude both are significantly different from the differential rotation of the long-lived sunspots (Newton and Nunn, 1951) used as an input into the computations.Now at Department of Physics, Victoria University of Wellington, Wellington, New Zealand.  相似文献   

13.
Based on a topological model for the magnetic field of a solar active region (AR), we suggest a criterion for the existence of magnetic null points on the separators in the corona. With the problem of predicting solar flares in mind, we have revealed a model parameter whose decrease means that the AR evolves toward a major eruptive flare. We analyze the magnetic field evolution for AR 9077 within two days before the Bastille Day flare on July 14, 2000. The coronal conditions are shown to have become more favorable for magnetic reconnection, which led to a 3B/X5.7 eruptive flare.  相似文献   

14.
The differential rotation of the large-scale photospheric magnetic field has been investigated with an autocorrelation technique using synoptic charts of the photospheric field during the interval 1959–66. Near the equator the rotation period of the field is nearly the same as the rotation rate of long-lived sunspots studied by Newton and Nunn. Away from the equatorial zone the field has a significantly shorter rotation period than the spots. Over the entire range of latitudes investigated the average rotation period of the photospheric magnetic field was about 1 1/4 days less than the average rotation period of the material observed with Doppler shifts by Livingston and by Howard and Harvey. Near the equator the photospheric field results agree with the results obtained from recurrent sunspots, while above 15° the photospheric field rotation rates agree with the rotation rates of the K corona and the filaments.  相似文献   

15.
The mean photospheric magnetic field of the sun seen as a star has been compared with the interplanetary magnetic field observed with spacecraft near the earth. Each change in polarity of the mean solar field is followed about 4 1/2 days later by a change in polarity of the interplanetary field (sector boundary). The scaling of the field magnitude from sun to near earth is within a factor of two of the theoretical value, indicating that large areas on the sun have the same predominant polarity as that of the interplanetary sector pattern. An independent determination of the zero level of the solar magnetograph has yielded a value of 0.1±0.05 G. An effect attributed to a delay of approximately one solar rotation between the appearance of a new photospheric magnetic feature and the resulting change in the interplanetary field is observed.  相似文献   

16.
We have searched for correlations between photospheric magnetic field changes in the north and south hemispheres of the Sun. Both active region logs and analysis of Mount Wilson magnetograms were employed. No correlations were found, and we infer that local convective turbulence is more important than dynamo processes with regard to the appearance of individual active regions.  相似文献   

17.
The evolution of vector photospheric magnetic fields has been studied in concert with photospheric spot motions for a flare-productive active region. Over a three-day period (5–7 April, 1980), sheared photospheric velocity fields inferred from spot motions are compared both with changes in the orientation of transverse magnetic fields and with the flare history of the region. Rapid spot motions and high inferred velocity shear coincide with increased field alignment along the B L= 0 line and with increased flare activity; a later decrease in velocity shear precedes a more relaxed magnetic configuration and decrease in flare activity. Crude energy estimates show that magnetic reconfiguration produced by the relative velocities of the spots could cause storage of 1032 erg day–1, while the flares occurring during this time expended 1031 erg day–1.Maps of vertical current density suggest that parallel (as contrasted with antiparallel) currents flow along the stressed magnetic loops. For the active region, a constant-, force-free magnetic field (J = B) at the photosphere is ruled out by the observations.Presently located at NASA/MSFC, Huntsville, Ala. 35812, U.S.A.  相似文献   

18.
《Chinese Astronomy》1979,3(2):205-208
This paper describes our daily photography of maps of the strong magnetic fields in solar active regions. In one case, the isogauss line at 2000 G in a complex magnetic region is seen to coincide with the optical outline of a sunspot umbra.  相似文献   

19.
V. Bumba 《Solar physics》1996,169(2):303-312
We have compiled the results of our long-term studies of the local magnetic field and its activity development, derived from investigating sunspot group evolution, photoelectrically measured longitudinal magnetic and velocity fields, and measurements of sunspot proper motions. We estimate certain regularities according to which the magnetic and velocity fields, and photospheric, as well as chromospheric activities develop. We speculate about the physical background of such processes.Dedicated to Cornelis de Jager  相似文献   

20.
Csada  I. K. 《Solar physics》1974,35(2):325-330
The photospheric magnetic data recorded from August 12, 1959 to September 29, 1967 and averaged over Bartels rotation periods are treated as zonal terms of the solar magnetic field which is expanded in a series of spherical harmonics. Numerical analysis of the reduced data gives seven periods. Three of these seem to be essential in the superposed variation of the solar magnetic field. The first of them (17.74 yr) is thought to be a contribution from the magnetic cycle for the determination of which the data covering only 8 yr interval are of insufficient accurity. For this reason, a 22.2 yr period is favoured by the computations. The numerical values of the two shorter periods are deduced as 2.557 yr and 4.194 yr. The amplitudes and phase angles of the periodic terms in question are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号