共查询到15条相似文献,搜索用时 109 毫秒
1.
针对基于人工提取特征的传统分类方法无法有效表达高空间分辨率遥感影像高层语义信息,且需要大量高质量训练数据,而带标签样本数据匮乏的问题。迁移学习运用已有知识对不同但相关领域问题进行求解,可有效解决目标领域中仅有少量标签样本数据的学习问题。该文提出利用迁移学习,基于卷积神经网络的深度学习模型进行高分影像场景分类。首先,基于ImageNet预训练的卷积神经网络Inception-v3模型提取高分影像数据的特征向量;然后,将特征向量作为输入数据训练一个新的单层全连接神经网络,经少量带标签影像场景数据训练后得到最终分类结果。该方法在UC Merced、AID和Wuhan 7类场景影像数据集上分别取得99%、93.3%和96.6%的准确率,相比已有方法,有效提高高分影像场景分类精度,同时说明知识迁移在高分影像场景分类领域的可行性。 相似文献
2.
3.
结合数据增广和迁移学习的高分辨率遥感影像场景分类 总被引:1,自引:0,他引:1
深度学习在计算机视觉领域取得了显著的成果,如图像分类、人脸识别、图像检索等。对于遥感领域而言,获取用于训练CNN的有标签数据集通常是一个重大挑战。本文研究了如何将CNN用于高分辨率遥感影像的场景分类,为了克服缺乏大量有标签遥感影像数据集的问题,结合CNN采用了两种技术:数据增广和迁移学习。在UC Merced Land Use数据集上,验证了VGG16、VGG19、ResNet50、InceptionV3、DenseNet121等5种网络的性能,分别达到了98.10%、96.19%、99.05%、97.62%、99.52%的分类准确率。 相似文献
4.
联合卷积神经网络与集成学习的遥感影像场景分类 总被引:1,自引:0,他引:1
针对人工设计的中、低层特征难以实现复杂场景影像的高精度分类以及卷积神经网络依赖大量训练数据等问题,结合迁移学习与集成学习,提出了一种联合卷积神经网络与集成学习的遥感影像场景分类算法。首先基于迁移学习的思想,利用在自然影像数据集上训练好的多个深层卷积神经网络模型作为特征提取器,提取图像多个高度抽象的语义特征;然后构建由Logistic回归和支持向量机组成的Stacking集成模型,对同一图像的多个特征分别训练Logistic模型,将预测概率结果融合构建概率特征;最后利用支持向量机对概率特征训练和预测,得到场景影像的分类结果。利用UCMerced_LandUse和NWPU-RESISC 45两种不同规模的遥感影像数据集进行试验,即使在只有10%的数据作为训练样本情况下,本文方法能够分别达到90.74%和87.21%的分类精度。 相似文献
5.
高分辨率遥感影像具有复杂的几何结构和空间布局,传统的卷积神经网络的方法仅能提取场景图像中的全局特征,忽略了上下文的关系,导致特征的表达能力受限,制约了分类精度提高。针对此问题,本文提出一个面向高分辨率遥感影像场景分类的CNN-GCN双流网络,该算法包含CNN流和GCN流两个模块。CNN流基于预训练DenseNet-121网络提取高分影像的全局特征;而GCN流采用由预训练VGGNet-16网络得到的卷积特征图构建邻接图,再通过GCN模型提取高分影像的上下文特征。最后,通过加权级联的方式有效地融合全局特征和上下文特征并利用线性分类器实现分类。本文选取AID、RSSCN7和NWPU-RESISC45共3个具有挑战性的数据集进行实验,得到的最高分类精度分别是97.14%、95.46%和94.12%,结果表明本文算法能够有效地表征场景并取得具有竞争力的分类结果。 相似文献
6.
7.
基于深度卷积神经网络的高分辨率遥感影像场景分类 总被引:2,自引:0,他引:2
场景分类对于高分辨率遥感影像的理解和信息提取具有重要意义。传统方法利用低、中级或语义特征来对影像的场景进行判别,但是针对高分影像涵盖的细节多、类别复杂等特点,中低层特征无法对影像语义进行准确描述。本文提出了一种基于深度卷积神经网络DCNN场景分类模型。首先利用卷积层对影像的纹理、颜色等低阶特征进行提取,然后利用池化层对重要特征进行筛选,最后将提取到的特征进行组合,形成高阶语义特征,利用高阶语义特征对高分影像进行场景分类。为了解决模型的过拟合问题,使用了数据增广、正则化及Dropout提高模型的泛化能力。本文方法在UC Merced-21取得了91.33%的准确率,相比于传统方法,有效地提高了分类精度,同时证明了深度卷积神经网络在遥感影像分类领域优越性。 相似文献
8.
针对传统高分辨率遥感影像场景变化检测流程复杂且严重依赖分类结果的问题,本文提出了一种顾及场景全局与局部相似性的变化检测方法。首先,将同一区域两个时相的遥感影像裁切成固定尺寸的图像块,构造场景对图像库,并划分为训练集和测试集;其次,构建融合场景全局与局部相似性的双分支卷积神经网络,实现场景相似度学习;然后,利用训练的相似度学习网络提取训练集场景相似度,并通过阈值遍历的方法得到最佳的相似度阈值;最后,基于相似度阈值将测试集场景对划分为变化场景和未变化场景,得到最终的变化检测结果。试验结果表明,本文方法的总体精度为0.94,Kappa系数为0.88,优于传统的分类后变化检测方法,是一种简单有效的场景变化检测方法。 相似文献
9.
联合显著性和多层卷积神经网络的高分影像场景分类 总被引:1,自引:2,他引:1
高分辨率遥感影像中的场景信息,对于影像解译和现实世界的理解具有重要意义。传统的场景分类方法多利用中、低层人工特征,但是高分辨率遥感影像的信息丰富,场景构成复杂,需要高层次的特征来表达。本文提出了一种联合显著性和多层卷积神经网络的方法,首先利用显著性采样获取包含影像主要信息的有意义的块,将这些块作为样本集输入卷积神经网络中进行训练,获得不同层次的特征表达,最后联合多层特征利用支持向量机进行分类。两组高分影像场景数据UC Merced 21类和Wuhan 7类试验表明,显著性采样能够有效地获取主要目标,减弱其他无关目标的影响,降低数据冗余;卷积神经网络能够自动学习高层次的特征,相比已有方法,本文方法能够有效提高分类精度。 相似文献
10.
为充分利用遥感影像的多尺度特征,解决遥感影像尺度差异、类间相似和类内差异等现象给高精度场景分类造成的困难,本文提出了一种注意力引导特征融合和联合学习的遥感影像场景分类方法。首先,利用深层卷积神经网络提取影像不同层次的特征图;然后,利用设计的残差注意力机制增强不同层次特征图的语义信息、抑制冗余噪声信息;最后,使用全局均值池化获取不同层次特征图的全局信息以构建特征向量,并将不同层次的特征向量融合,3个不同层次的特征向量及融合后的特征向量分别采用独立的全连接层进行分类。利用联合损失训练网络参数,采取多分类器决策级融合的方式提高预测的稳健性。在UC Merced、AID和NWPU-RESISC45数据集上的试验结果表明,本文方法显著改善了对相似场景及类内差异显著场景的辨识能力,与使用多尺度特征的同类型场景分类方法相比,总体分类精度分别提高0.84%、4.04%和4.43%。 相似文献
11.
基于卷积神经网络的高光谱图像分类是当前的研究热点,先后发展了空洞卷积、可形变卷积等先进模型。然而,现有可形变卷积只在空间维偏移,忽略了高光谱图像光谱之间的差异信息。为此,本文将可形变卷积从空间维扩展到光谱维,设计了光谱可形变卷积,提出了光谱可形变卷积网络SDCNN (Spectral Deformable Convolutional Neural Network)。首先,利用全连接层学习光谱可形变卷积的偏移量,采用线性差值对图像光谱维进行特征校准;其次,采用多层1×1卷积进行光谱维特征聚合;最后,使用三维卷积层提取光谱—空间联合特征。不同于空间可形变卷积,光谱可形变卷积只在光谱维上进行偏移,可以为不同类别选择更合适的特征波段,提升模型的判别性。在国际通用测试数据Indian Pines、University of Pavia以及University of Houston上进行了实验,结果表明:本文提出的SDCNN方法优于其他深度学习方法,在相同样本条件下取得了更高的分类精度,总体精度达到了98.86%(Indian Pines,10%/类)、99.81%(University of P... 相似文献
12.
高分辨率遥感影像的目标检测与识别,是高分对地观测系统中影像信息自动提取及分析理解的重要内容。针对传统影像目标检测与识别算法中人工设计特征稳健性与普适性差的问题,本文提出基于高分辨率遥感影像目标尺度特征的卷积神经网络检测与识别方法。首先通过统计遥感影像目标的尺度范围,获得卷积神经网络训练与测试过程中目标感兴趣区域合适的尺度大小。然后根据目标感兴趣区域合适的尺度,提出基于高分辨率遥感影像目标尺度特征的卷积神经网络检测与识别架构。通过WHU-RSone数据集对本文卷积神经网络架构与Faster-RCNN架构对比测试验证。试验结果表明,本文架构ZF模型和本文架构VGG-16模型的mean average precision(mAP)分别比Faster-RCNNZF模型和Faster-RCNNVGG-16模型提高8.17%和8.31%,本文卷积神经网络架构可获得良好的影像目标检测与识别效果。 相似文献
13.
14.
针对卷积神经网络的特征表达方法难以满足大规模遥感图像检索需要的问题,该文将卷积层特征和全连接层特征进行联合,提出一种基于卷积神经网络多层特征联合的遥感图像检索方法。该方法提取不同卷积层特征作为图像的局部特征,提取全连接层特征作为感兴趣区域,并对二者进行跨层整合得到新的图像特征并应用于图像检索。实验结果表明,与利用单一的全连接层或者卷积层特征以及传统的经典检索方法相比,该方法取得了很好的检索结果,能够更好地保留图像的全局信息和空间结构信息,提高遥感图像检索的性能。 相似文献
15.
海底底质分类对于海洋资源开发与利用、海洋科学研究等多方面具有重要意义。目前,多波束探测是实现大范围海底底质分类的有效手段之一,通常基于多波束反向散射强度提取角度响应(AR)特征及反向散射图像特征进行底质分类。由于特征来源较单一,分类器结构简单,往往分类精度不高。为此,本文提出了一种基于深层卷积神经网络(CNN)的多波束海底底质分类方法。除反向散射强度特征外,还利用地形特征,将特征向量转换为波形图,再输入卷积神经网络进行训练和分类。试验对比不同特征组合以及BP网络、支持向量机(SVM)、K近邻(KNN)、随机森林(RF)4种常规分类器,本文模型算法总体分类精度达到94.86%,Kappa系数为0.93,精度具有明显优势,效率也比较高。表明该方法有效利用两种数据类型所蕴含的海底底质信息,充分发挥卷积神经网络权值共享、高效率等特点,实现高分辨率海底底质分类,可对海底底质分类研究提供参考。 相似文献