首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The observational evidence for infall associated with star formation is discussed. Whilst spectral energy distributions of young protostellar objects are consistent with infall, the best direct evidence comes from millimetre and sub-millimetre spectral line observations. Considerations of the formation of the line profiles and the chemical effects of gas-grain interactions suggest that there is only a very short ‘window’ in the evolutionary track of a protostellar object during which infall is directly observable. This may explain why so few infall candidates have been detected. It is argued that self-consistent models of the dynamical and chemical evolution of collapsing cores, coupled to multiple high resolution line observations, will provide definitive evidence for the presence of infall in these objects.  相似文献   

2.
We discuss the influence of the cosmological background density field on the spherical infall model. The spherical infall model has been used in the PressSchechter formalism to evaluate the number abundance of clusters of galaxies, as well as to determine the density parameter of the Universe from the infalling flow. Therefore, the understanding of collapse dynamics plays a key role for extracting cosmological information. Here, we consider a modified version of the spherical infall model. We derive the mean field equations from the Newtonian fluid equations, in which the influence of cosmological background inhomogeneity is incorporated into the averaged quantities as the backreaction . By calculating the averaged quantities explicitly, we obtain simple expressions and find that, in the case of a scale-free power spectrum, density fluctuations with a negative spectral index make the infalling velocities slow. This suggests that we underestimate the density parameter when using the simple spherical infall model. In cases with the index n >0, the effect of background inhomogeneity could be negligible and the spherical infall model becomes a good approximation for infalling flows. We also present a realistic example with a cold dark matter power spectrum. In this case, the mean infall tends to be slow owing to the anisotropic random velocity.  相似文献   

3.
The abundance evolution of oxygen in the local galactic disk is discussed. The age-metallicity relation of nearby stars is confronted with predictions from simple evolution models where infall of primordial gas and outflow of disk gas and dust are allowed. Gas infall and expulsion of dust grains have considerable effects on the age-metallicity relation. Dust outflow may be important in order to solve the discrepancy between the observed rate of infall of primordial gas and rates predicted by simple evolution models.  相似文献   

4.
Molecular processes play both active and passive/diagnostic rôles in the process of star formation. Various molecular behaviours can be identified in star-forming regions with the result that different molecular species can be used to constain different aspects of the infall process, such as the density structures, the kinematics and the evolutionary history of star-forming cores. The main limitations in the chemical analysis of infall sources arise from poorly constrained boundary conditions; in particular the chemical and physical initial conditions are usually very uncertain. The most promising application of astrochemical modelling is probably in the analysis of the infall dynamics through combined chemical/radiative transfer modelling of molecular emission line profiles.  相似文献   

5.
An ensemble cluster has been formed from a data set comprising a complete magnitude-limited sample of 680 giant galaxies  ( M 0 B ≲−19)  in eight low-redshift clusters, normalized by the velocity dispersions and virial radii for the early-type cluster populations. Distinct galaxy populations have been identified, including an infall population. A majority (50–70 per cent or greater) of the infall population are found to be in interacting or merging systems characterized by slow gravitational encounters. The observed enhancement of galaxy–galaxy encounters in the infall population compared to the field can be explained by gravitational shocking. It is shown that disc galaxy mergers in the infall population integrated over the estimated lifetime of the cluster (∼10 Gyr) can readily account for the present cluster S0 population.  相似文献   

6.
Gravitational accretion accumulates the original mass.This process is crucial for us to understand the initial phases of star formation.Using the specific infall profiles in optically thick and thin lines,we searched the clumps with infall motion from the Milky Way Imaging Scroll Painting(MWISP) CO data in previous work.In this study,we selected 133 sources as a sub-sample for further research and identification.The excitation temperatures of these sources are between 7.0 and 38.5 K,while the H_2 column densities are between 10~(21) and 10~(23) cm~(-2).We have observed optically thick lines HCO~+(1-0) and HCN(1-0) using the DLH 13.7-m telescope,and found 56 sources with a blue profile and no red profile in these two lines,which are likely to have infall motions,with a detection rate of 42%.This suggests that using CO data to restrict the sample can effectively improve the infall detection rate.Among these confirmed infall sources are 43 associated with Class O/I young stellar objects(YSOs),and 13 which are not.These 13 sources are probably associated with the sources in the earlier evolutionary stage.In comparison,the confirmed sources that are associated with Class O/I YSOs have higher excitation temperatures and column densities,while the other sources are colder and have lower column densities.Most infall velocities of the sources that we confirmed are between 10~(-1) to 10~0 km s~(-1),which is consistent with previous studies.  相似文献   

7.
We present distributions of the orbital parameters of dark matter substructures at the time of merging into their host halo. Accurate knowledge of the orbits of dark matter substructures is a crucial input to studies which aim to assess the effects of the cluster environment on galaxies, the heating of galaxy discs and many other topics. Orbits are measured for satellites in a large number of N -body simulations. We focus on the distribution of radial and tangential velocities, but consider also distributions of orbital eccentricity and semimajor axis. We show that the distribution of radial and tangential velocities has a simple form and provide a fitting formula for this distribution. We also search for possible correlations between the infall directions of pairs of satellites, finding evidence for positive correlation at small angular separations as expected if some infall occurs along filaments. We also find (weak) evidence for correlations between the direction of the infall and infall velocity and the spin of the host halo.  相似文献   

8.
Infall models for the evolution of the local galactic disk were studied and confronted with a large number of observational constraints from the solar vicinity, inclusive of the white dwarf luminosity function. The models are characterized as follows: 1. The key-functions (SFR, IMF, gas infall rate) are not prescribed by simple laws, but are directly derived from observational constraints. 2. A scatter in the metallicity at fixed age is considered which partly reflects inhomogeous chemical evolution. 3. Special attention is drawn to the internal consistency of the models. 4. In addition to infall of low-metallicity gas, metal-enriched outflows are allowed. The “best” model is characterized by a disk age of ≈︁ 12 Gyr, a SFR which is decreasing over the first half and is nearly constant over the second half of the disk evolution, and by a similar temporal run of the gas infall rate. Moderate metal-enriched outflow can not be excluded.  相似文献   

9.
While the importance of merging, accretion, and infall processesin determining galactic evolution is well established boththeoretically and observationally, details on how such processesare taking place nowadays even in our own Galaxy are stillrelatively poorly known, especially due to large remaininguncertainties on the location and origin of high velocity clouds.In this paper we focus on the possible role that galacticoutflows and gas infall may have on directly triggering starformation in the halo and in galactic disks. While compellingevidence has been accumulating in recent years suggesting thatsome level of star formation directly triggered by outflows isvery likely to exist in the halo of some galaxies, the evidencefor star formation dynamically triggered by infall is far moreelusive due to confusion with other, more efficient large-scalestar forming mechanisms operating in the galactic disk. Despite ofincreasingly realistic simulations of the gas circulation betwenthe gas and the halo and of high velocity cloud impacts ongalactic disks, the efficiency of star formation directlytriggered by such impacts remains an open question.  相似文献   

10.
History of Star Formation and Chemical Enrichment in the Milky Way Disk   总被引:2,自引:0,他引:2  
Based on a physical treatment of the star formation law similar to that given by Efstathiou, we have improved our two-component chemical evolution model for the Milky Way disk. Two gas infall rates are compared, one exponential, one Gaussian. It is shown that the star formation law adopted in this paper depends more strongly on the gas surface density than that in Chang et al. It has large effects on the history of star formation and gas evolution of the whole disk. In the solar neighborhood, the history of chemical evolution and star formation is not sensitive to whether the infall rate is Gaussian or exponential. For the same infall time scale, both forms predict the same behavior for the current properties of the Galactic disk. The model predictions do depend on whether or not the infall time scale varies with the radius, but current available observations cannot decide which case is the more realistic. Our results also show that it would be inadequate to describe the gradient evolution along the Gala  相似文献   

11.
Anomalous molecular line profile shapes are the strongest indicators of the presence of the infall of gas that is associated with star formation. Such profiles are seen for well-known tracers, such as HCO+, CS and H2CO. In certain cases, optically thick emission lines with appropriate excitation criteria may possess the asymmetric double-peaked profiles that are characteristic of infall. However, recent interpretations of the HCO+ infall profile observed towards the protostellar infall candidate B335 have revealed a significant discrepancy between the inferred overall column density of the molecule and that which is predicted by standard dark cloud chemical modelling.
This paper presents a model for the source of the HCO+ emission excess. Observations have shown that, in low-mass star-forming regions, the collapse process is invariably accompanied by the presence of collimated outflows; we therefore propose the presence of an interface region around the outflow in which the chemistry is enriched by the action of jets. This hypothesis suggests that the line profiles of HCO+, as well as other molecular species, may require a more complex interpretation than can be provided by simple, chemically quiescent, spherically symmetric infall models.
The enhancement of HCO+ depends primarily on the presence of a shock-generated radiation field in the interface. Plausible estimates of the radiation intensity imply molecular abundances that are consistent with those observed. Further, high-resolution observations of an infall-outflow source show HCO+ emission morphology that is consistent with that predicted by this model.  相似文献   

12.
The magnetic fields affect collapse of molecular cloud cores. Here, we consider a collapsing core with an axial magnetic field and investigate its effect on infall of matter and formation of accretion disk. For this purpose, the equations of motion of ions and neutral infalling particles are numerically solved to obtain the streamlines of trajectories. The results show that in a non-steady state of ionization and ion–neutral coupling, which is not unexpected in the case of infall, the radius of accretion disk will be larger as a consequence of axial magnetic field.  相似文献   

13.
Revised equations of motion are formulated on more general assumptions than hitherto making allowance for some reflection of sunlight by a dust-particle, and from these the secular rates of change of the orbital elements of the particle are obtained. The equation for the eccentricity yields numerical results for the time taken for given changes in this element to occur. Other elements turn out to be expressible in terms of the eccentricity and thence are effectively also known in terms of the time. More general forms of earlier results are found, and some new mathematical results in the theory of the process are derived. The time of infall to the Sun associated with almost circular initial motion of a particle is calculated, and also the time from an orbit of initially high eccentricity. In this latter case, infall takes place much more rapidly than from a circular orbit of radius comparable with the average distance in the eccentric orbit. The effect on a particle of a long-period comet during a single return is negligible compared with the change in its binding-energy to the Sun that will in general result from planetary action. The possible history of a dust-particle from original capture by the Sun to final infall to the solar surface is briefly considered.  相似文献   

14.
银盘的径向金融丰度梯度   总被引:5,自引:0,他引:5  
详细综棕了银盘(包括HII区,早B型星,行星状星云和疏散星团)径向元素丰度梯度的观测结果,分析了丰度梯度的空间和时间变化的情况,指出根据目前的观测结果,还很难确定在银盘的演化历史中径向元素丰度梯度是逐渐变平缓还是逐渐变陡,比较了目前各种化学演化模型对径向丰度梯度演化的预测结果,初步探讨了丰度梯度可能的产生机制及影响其演化的各种重要物理过程。  相似文献   

15.
We present a semi-analytical investigation of a simple one-dimensional, steady-state model for a mass-loaded, rotating, magnetized, hydrodynamical flow. Our approach is analogous to one used in early studies of magnetized winds. The model represents the infall towards a central point mass of the gas generated in a cluster of stars surrounding it, as is likely to occur in some active nuclei and starburst galaxies. We describe the properties of the different classes of infall solutions. We find that the flow becomes faster than the fast-mode speed, and hence decoupled from the centre, only for a limited range of parameter values, and when magnetic stresses are ineffective. Such flow is slowed as it approaches a centrifugal barrier, implying the existence of an accretion disc. When the flow does not become super-fast and the magnetic torque is insufficient, no steady solution extending inward to the centre exists. Finally, with a larger magnetic torque, solutions representing steady sub-Alfvénic flows are found, which can resemble spherical hydrodynamical infall. Such solutions, if applicable, would imply that rotation is not important and that any accretion disc formed would be of very limited size.  相似文献   

16.
Two-dimensional calculations of the hydrodynamics produced by nuclear starbursts, taking into consideration the accretion or infall of disc matter on to the heart of the starburst, are here shown to lead to stationary solutions that naturally account for the kpc-scale biconical X-ray and optically detected filamentary structure. The calculated flows are critically compared with former models and with observations of nuclear starbursts. For the infall models, we find that the mechanical energy power of the nuclear cluster must exceed a threshold value, imposed by the rate of disc mass accretion, to undergo blowout. This, combined with an initial mass function (IMF), is shown to regulate the minimum amount of mass that a starburst needs to generate kpc-scale outflows.  相似文献   

17.
Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: (1) A large number of galaxies are accompanied by gas-rich dwarfs or are surrounded by HI cloud complexes, tails and filaments. This suggests ongoing minor mergers and recent arrival of external gas. It may be regarded, therefore, as direct evidence of cold gas accretion in the local universe. It is probably the same kind of phenomenon of material infall as the stellar streams observed in the halos of our galaxy and M 31. (2) Considerable amounts of extra-planar HI have been found in nearby spiral galaxies. While a large fraction of this gas is undoubtedly produced by galactic fountains, it is likely that a part of it is of extragalactic origin. Also the Milky Way has extra-planar gas complexes: the Intermediate- and High-Velocity Clouds (IVCs and HVCs). (3) Spirals are known to have extended and warped outer layers of HI. It is not clear how these have formed, and how and for how long the warps can be sustained. Gas infall has been proposed as the origin. (4) The majority of galactic disks are lopsided in their morphology as well as in their kinematics. Also here recent accretion has been advocated as a possible cause. In our view, accretion takes place both through the arrival and merging of gas-rich satellites and through gas infall from the intergalactic medium (IGM). The new gas could be added to the halo or be deposited in the outer parts of galaxies and form reservoirs for replenishing the inner parts and feeding star formation. The infall may have observable effects on the disk such as bursts of star formation and lopsidedness. We infer a mean “visible” accretion rate of cold gas in galaxies of at least . In order to reach the accretion rates needed to sustain the observed star formation (), additional infall of large amounts of gas from the IGM seems to be required.  相似文献   

18.
Previous shock models for the AM Herculis-type magnetic variables have assumed homogeneous accretion columns, with constant infall densities out to a characteristic column radius. The resulting energy distributions are strongly peaked in the visible to ultraviolet and are in disagreement with observations. We report the preliminary results of calculations with more general radial functions of the infall density. Exponential and gaussian profiles yield continua profiles produce continua which are flatter and in better agreement with observations. Comparisons are made to data for AM Her and E2003+225.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

19.
We have constructed a family of simple models for spiral galaxy evolution to allow us to investigate observational trends in star formation history with galaxy parameters. The models are used to generate broad-band colours from which ages and metallicities are derived in the same way as the data. We generate a grid of model galaxies and select only those that lie in regions of parameter space covered by the sample. The data are consistent with the proposition that the star formation history of a region within a galaxy depends primarily on the local surface density of the gas but that one or two additional ingredients are required to explain the observational data fully. The observed age gradients appear steeper than those produced by the density dependent star formation law, indicating that the star formation law or infall history must vary with galactocentric radius. Furthermore, the metallicity–magnitude and age–magnitude correlations are not reproduced by a local density dependence alone. These correlations require one or both of the following: (i) a combination of mass dependent infall and metal enriched outflow, or (ii) a mass dependent galaxy formation epoch. Distinguishing these possibilities on the basis of current data is extremely difficult.  相似文献   

20.
The formation and collapse of a protostar involves the simultaneous infall and outflow of material in the presence of magnetic fields, self-gravity and rotation. We use self-similar techniques to self-consistently model the anisotropic collapse and outflow by using a set of angle-separated self-similar equations. The outflow is quite strong in our model, with the velocity increasing in proportion to radius, and material formally escaping to infinity in the finite time is required for the central singularity to develop.
Analytically tractable collapse models have been limited mainly to spherically symmetric collapse, with neither magnetic field nor rotation. Other analyses usually employ extensive numerical simulations, or either perturbative or quasistatic techniques. Our model is unique as an exact solution to the non-stationary equations of self-gravitating magnetohydrodynamics (MHD), which features co-existing regions of infall and outflow.
The velocity and magnetic topology of our model is quadrupolar, although dipolar solutions may also exist. We provide a qualitative model for the origin and subsequent evolution of such a state. However, a central singularity forms at late times, and we expect the late-time behaviour to be dominated by the singularity, rather than depend on the details of its initial state. Our solution may, therefore, have the character of an attractor among a much more general class of self-similarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号