首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The southern part of the Qinghai-Xizang (Tibet) Plateau and its adjacent area are rich in mire flora. There are 51 families, 101 genera and 220 species. The geographical compositions of this region are very complex, consisting of the following-geographical elements: tropic-subtropic elements approximating to 8.33% of the entire flora in the region, tropic-temperate elements 22.71%, temperate elements 43.18%, cosmopolitan elements 9.85%, the Qinghai-Xizang endemic elements 14.39%, north polemountain elements 1.51%. Temperate elements in this region are dominant. The dominant species of mires, Carex lasiocarpa, in this region is also found in northeast China, Finland and North America. The origin of mires of this region is earlier than northeast China and Finland. This shows that the southern part of the Qinghai-Xizang Plateau and its adjacent areas may be the centre of the origin and distribution of temperate elements.  相似文献   

2.
FLOROGEOGRAPHYOFMIREPLANTSINSOUTHERNPARTOFQINGHAIXIZANGPLATEAUANDITSADJACENTAREASZhaoKuiyi(赵魁义)ChangchunInstituteofGeography...  相似文献   

3.
邢福武,李泽贤,叶华谷,陈炳辉,吴德邻ASTUDYONTHEFLORISTICPLANTGEOGRAPHYOFXISHAISLANDS,SOUTHCHINA¥XingFuwu;LiZexian;YeHuagu;ChenBinghui;WuDelin(...  相似文献   

4.
STREAMFLOW CHARACTERISTICS OF THE EASTERN QINGHAI-XIZANG PLATEAU   总被引:1,自引:0,他引:1  
The eastern Qinghai-Xizang (Tibet) Plateau is the headwater area for many large Asian rivers. Permafrost occurs above 4,200 m a.s.l. and glaciers occupy the summits and high valleys of the east-west trending mountain chains. Annual runoff generally increases with precipitation which is augmented southward by the rise in topography. Rainfall, snow melt, glacier melt and groundwater are the primary sources of stream flow, and the presence of permafrost enhances the flashiness of runoff response to rainfall and snowmelt events. Peak flows are concentrated between June and September. And winter is low flow season. Three types of runoff patterns may be distinguished according to their primary sources of water supply: snowmelt and rainfall, glacier melt and snowmelt, and groundwater. Large rivers generally drain more than one environments and their runoff regime reflects an integration of the various flow patterns on the plateau.  相似文献   

5.
The relations between δ18O and temperature on the different time scales were analysed, according to the data from Tuotuohe (34°13′N, 96°25′E; 4533 m a. s. l.), Delingha (37°22′N, 97°22′E; 2981 m a. s. l.) and Xining (36°37′N, 101°46′E; 2261 m a. s. l.) in the Qinghai-Xizang Plateau. The results show that the significance of d δ18O/dT on different time scales are different. The d δ18O/dT on the synoptic scale reflects the interdependent relation between δ18O and temperature in the short-term synoptic scale process; the d δ18O/d T on the seasonal scale reflects the relation between them whithin a year; and the d δ18O/d T on the climatic scale reflects the relation between them in the long-term climatic change. The calculated d δ18O/dT on climatic scale is very close to the theoretical values on the condition of advection transport for Tuotuohe Station. However, there are great differences between the calculated and the theoretical values for Delingha and Xining stations.  相似文献   

6.
THE FLORISTIC CHARACTERISTICS OF THE TROPICAL RAINFOREST IN XISHUANGBANNA ZhuHua(朱华)(XishuangbannaTropicalBotanicalGarden,the...  相似文献   

7.
Based on field investigations, laboratory analyses and 14C dating, this paper discusses the laws of the formation and development of the paleosols in the northeast region of the Qinghai-Xizang Plateau since Late Pleistocene. The authors reconstruct basic conditions of climate, vegetation, soil and natural zones during the three periods in which the paleosols were formed, i.e. the last interglacial of the Late Pleistocene, warm stage of Late Glacial and the Optimum of Holocene. Finally, this paper discusses the relationship between the paleosols and the uplift of the Qinghai-Xizang Plateau.  相似文献   

8.
青藏高原大气热源气候特征的研究   总被引:2,自引:0,他引:2  
用NCEP/NCAR再分析资料和小波分析方法分析研究了1950-2005年青藏高原大气热源气候特征和变化特征,主要结论包括:(1)夏季青藏高原东部大气热源的强度明显较西部大.6月份,高原东部热源的强度是高原西部的近两倍,7月份的值也比西部大了40%以上.(2)青藏高原全区、东部和西部逐年平均的大气热源有明显不同的变化特征.高原全区年平均大气热源的变化主要是一个14年的时间尺度;高原东部不仅有14年的主要时间变化尺度,同时还有一个非常显著的2.6年的时间变化尺度;高原西部则不同,是一个不明显的1-2年的时间尺度.  相似文献   

9.
The Qinghai-Xizang (Tibet) Plateau area was subjected to twice uplift and planation in the Tertiary. Intense uplifting of the plateau area has given rise to drastic changes and differentiation of physical environment on the plateau and the surrounding area since 3.4 Ma B.P. Significant environmental changes with dry tendency in interior of the plateau had occurred during the last 150 ka B.P. By comparative study on several mountains of the plateau, two systems of the structure-type of the altitudinal belt are identified and nine groups are subdivided. A distribution model with close relevance to highland uplift effect has been generalized. A number of striking geo-ecological phenomen and their spatial pattern such as moisture corridor, dry valleys, high-cold meadow zone, and high-cold arid core area are investigated and discussed. Based on the thermal conditions, moisture regimes and variation in landforms of the plateau is sequentially demarcated. A tentative scheme of 2 temperature belts, 10 natural zones and 28 physical districts has been proposed not including southern slopes of the East Himalayas. The Qinghai-Xizang Plateau is sensitive to “green house effect”, showing close relation with global change. Characteristics of temperature and precipitation on the plateau during the last 2000 years, and response of glaciers, snow deposit and permafrost on the plateau to global change are dealt with in the present paper. Under the auspices of Chinese National Key Project for Basic Research (G1998040800) and CAS project on the Qinghai-Xizang Plateau (KZ951 - A1 - 204, KZ95T - 06)  相似文献   

10.
Estimates of the palaeo-subaerial wind direction were studied systematically for the first time by using the anisotropy of loess magnetic susceptibility (AMS) measurements in the northwestern China. One hundred and forty undisturbed oriented aeolian loess samples were collected from Lanzhou, Linxia and Wudu areas for AMS measurements, which indicated the subaerial wind directions were not the same while the loess deposited. From the Early Pleistocene to Middle Pleistocene till Late Pleistocene, the wind direction experienced an anticlockwise rotation in the studied area. We suggested this change was related to the uplift of the Qinghai-Xizang Plateau and the adjustment of current and landform effects.  相似文献   

11.
THEANISOTROPYOFLOESSMAGNETICSUSCEPTIBILITYINTHENORTHEASTERNFRINGEOFQINGHAIXIZANGPLATEAUASANINDICATOROFPALAEOWINDDIRECTIONWan...  相似文献   

12.
Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3–4 glaciations have been recognized. The largest one occurred in the Late Middle Pleistocene with piedmont glaciers, ice caps and trellis valley glaciers in many high peak regions. But here is no evidence of a unified ice sheet covering the whole plateau as described by M. Kuhle. Due to the further uplifting of the Himalayas and Qinghai-Xizang Plateau the climate became progressively driver, diminishing the extension of glaciers during the Late Pleistocene. The elevation of the snow line during the Last Glaciation was about 4,000 m on the south, east and northeast edges of the plateau and ascended to 5500 m on the hinder northwest of the plateau. The thermal effect of the big plateau massif, the sharp increase of aridity from the southeast rim to the northwest inland area and the abrupt decrease of precipitation during the Ice Age largely account for the distribution of the Quaternary glaciers in the Qinghai-Xizang Plateau. The neglect of Chinese literature may be one of the causes accounting for M. Kuhle’s misinterpretation on the environment of the Quaternary glaciations in the Qinghai-Xizang Plateau.  相似文献   

13.
I.INTRODUCTIONTheglobalaveragesurfaceairtemperatureoftheearthhasincreasedbyabout0.5℃sincethemid19thcentury(Houghtonetal.,19...  相似文献   

14.
PERMAFROSTDEGENERATIONINTHEEASTOFQINGHAI-XIZANGPLATEAU¥ZhuLinnan;WuZiwang;LiuYongzhi;LiDongqing(StateKeyLaboratoryofFrozenSoi...  相似文献   

15.
The knowledge of contemporary climatic change over the Qinghai-Xizang (Tibet) Plateau (QXP) has been inadequate for a long time due to lack of enough observational data. In this paper, on the basis of monthly temperature and precipitation data in 1961–1990 from 48 stations on the QXP, the temperature data are extended backward to 1901 with an empirical orthogonal function (EOF) method, microscopic characteristics of contemporary climatic change over the QXP are analyzed, and the response of the plateau climate to global warming is discussed in combination with atmospheric general circulation model (GCM) outputs. The results show that the plateau climate, as a whole, has been warming since the early part of this century, that the precipitation has generally been increasing during the recent 30 years, and that these climatic trends seem to be related to the enhanced green-house effect induced by increasing CO2 concentration in the atmosphere. This work is supported by the National and CAS (the Chinese Academy of Sciences) Tibet Research Project.  相似文献   

16.
BASIC FEATURES OF FOREST STEPPE IN THE LOESS PLATEAU OF CHINA   总被引:2,自引:0,他引:2  
BASICFEATURESOFFORESTSTEPPEINTHELOESSPLATEAUOFCHINA¥ZhuZhicheng(朱志诚)(DepartmentofBiology.NorthwestUniversity,Xian710069,PRC)A...  相似文献   

17.
采用1948-2007年共60年的NCEP/NCAR资料,计算了夏季青藏高原地区的可降水量,并采用小波分析方法对可降水量的变化特征进行分析.结果表明:夏季青藏高原上有一个明显的"湿池",湿池有3个可降水量中心,分别位于高原西南部、高原南侧和高原东南部.湿池3个中心的可降水量变化有着明显的年代际特征,高原西南部以13.9a的周期变化最为明显,高原南侧9.2a的周期变化最为明显,高原东南部时间尺度2.6a的周期变化最为明显.趋势分析表明,高原西南部的可降水量可能开始增加,而高原南侧和高原东南部的可降水量应该依然处于偏少的阶段.  相似文献   

18.
19.
This overview discusses old and new results as to the controversy on the past glacier extension in High Asia, which has been debated for 35 years now. This paper makes an attempt to come closer to a solution. H.v. Wissmann's interpretation (1959) of a small-scale glaciation contrasts with M. Kuhle's reconstruction (1974) of a large-scale glaciation with a 2.4 million km2 extended Qinghai-Xizang (Tibetan) inland glaciation and a Himalaya-Karakorum icestream network. Both opinions find support but also contradiction in the International and Chinese literature (Academia Sinica). The solution of this question is of supraregional importance because of the subtropical position of the concerned areas. In case of large albedo-intensive ice surfaces, a global cooling would be the energetical consequence and, furthermore, a breakdown of the summer monsoon. The current and interglacial heat-low above the very effective heating panel of the Qinghai-Xizang (Tibetan) Plateau exceeding 4000 m, which gives rise to this monsoon circulation, would be replaced by the cold-high of an inland ice. In addition, the plate-tectonically created Pleistocene history of the uplift of High Asia — should the occasion arise up to beyond the snowline (ELA) —would attain a paleoclimatically great, perhaps global importance. In case of a heavy superimposed ice load, the question would come up as to the glacio-isostatic interruption of this primary uplift. The production of the loesses sedimentated in NE-China and their very probable glacial genesis as well as an eustatic lowering of the sea-level by 5 to 7 m in the maximum case of glaciation are immediately tied up with the question of glaciation we want to discuss. Not the least, the problems of biotopes of the sanctuary-centres of flora and fauna, i.e., interglacial re-settlement, are also dependent on it. On the basis of this Quaternary- geomorphological-glaciological connection, future contributions are requested on the past glaciation, the current and glacial permafrost table and periglacial development, the history of uplift, and the development of Ice Age lakes and loess, but also on the development of vegetation and fauna in High Asia.  相似文献   

20.
There are 463 species of woody plant, belonging to 166 genera and 70 families in Shanxi, North China. The floristic composition types of genera and species are abundant, in which the compositions distributed in temperate zones (including North Temperate, Old World Temperate and Temperate Asia), having 62 genera, are dominant and account for 38.27% in total genera (except for Cosmopolitan), and they are major constructive or dominant species of vegetation in Shanxi. The floristic compositions of woody plants of Shanxi, Hebei, Beijing, Shandong, Henan, Jiangxi and Inner Mongolia were studied comparatively by using diversity index, principal component analysis (PCA) and group-average clustering, respectively. The floristic composition of Shanxi was considerably similar to that of Hebei, Beijing and Shandong because they shared a lot of genera, specially genera distributed in temperate regions, such as Rosa, Quercus, Populus, Salix, Acer, Ulmus, Pinus etc. and their eco-environment were considerably similar. However, the flora of Shanxi was comparatively different from that of Henan, Jiangxi and Inner Mongolia by reason that there were distinct differences among their eco-geographic conditions, floristic compositions and constructive or dominant species of dominant vegetation types. Supported by Shanxi Returned Oversea Scholar Foundation, China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号