首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluvial and deltaic sediments from Jameson Land in East Greenland contain the first record of the leaf beetle Phratora o f. polaris , not presently found in Greenland; the ground beetle Bembidion grapii , north of this species' present northern range limit; and the true bug Nysius gruenlandieus . In addition, there is a rather diverse flora. All of these records are in sediments of Early Holocene age. We suggest that most of these animals and plants immigrated to East Greenland in the Early Holocene by long-distance chance dispersal, mostly from northwest Europe. The environment was physiognomically similar to that of today, but Salix aretica and Cassiope tetragonu that are important dwarf shrubs today had not yet immigrated.  相似文献   

2.
Marine, fluvial and glacigene sediments exposed in coastal cliffs and stream-cut sections in East Greenland between latitudes 69° and 78° N display a record of Quaternary climatic and environmental change going back to pre-Saalian times (> 240 ka), but with main emphasis on the last interglacial/glacial cycle. The stratigraphical scheme is based on studies on the Jameson Land peninsula, and contains five glacial stages and stades with the Greenland ice sheet or its outlets reaching the outer coasts. Individual sites are correlated and dated by a combination of biostratigraphy, luminescence dating, amino acid analyses, as well as 14C- and uranium series dating. The pre-Weichselian Lollandselv and Scoresby Sund glaciations were the most extensive. During the Weichselian the Inland Ice margin in this part of East Greenland was apparently very stable. The Aucellaelv, Jyllandselv and Flakkerhuk stades mark the advance and subsequent retreat of outlet glaciers from the Inland Ice which advanced through the wide Scoresby Sund basin and reached the inner shelf. In-between the glacier advances, three interglacial or interstadial periods have been recognized. During the Langelandselv interglacia-tion (≅ Eemian) the advection of warm Atlantic water was higher than during the Holocene, and the terrestrial flora and insect faunas show that summer temperatures were 3–4°C higher than during the Holocene optimum. There is no unambiguous evidence for cooling in the sediments from this interval. Later, in isotope stage 5, there were apparently two ice-free periods. During the Hugin Sø interstade, stable Polar water dominated Scoresby Sund, and the terrestrial flora suggests summer temperatures 2° -3° lower than the present. The marine and fluvial sediments from the second ice-free period, the Mønselv interstade, are devoid of organic remains.  相似文献   

3.
During the last glacial stage, Washington Land in western North Greenland was probably completely inundated by the Greenland Ice Sheet. The oldest shell dates from raised marine deposits that provide minimum ages for the last deglaciation are 9300 cal. yr BP (northern Washington Land) and 7600 cal. yr BP (SW Washington Land). These dates indicate that Washington Land, which borders the central part of Nares Strait separating Greenland from Ellesmere Island in Canada, did not become free of glacier ice until well into the Holocene. The elevation of the marine limit falls from 110 m a.s.l. in the north to 60 m a.s.l. in the southwest. The recession was followed by readvance of glaciers in the late Holocene, and the youngest shell date from Neoglacial lateral moraines north of Humboldt Gletscher is 600 cal. yr BP. Since the Neoglacial maximum, probably around 100 years ago, glaciers have receded. The Holocene marine assemblages comprise a few southern extralimital records, notably of Chlamys islandica dated to 7300 cal. yr BP. Musk ox and reindeer disappeared from Washington Land recently, perhaps in connection with the cold period that culminated about 100 years ago.  相似文献   

4.
Early Weichselian interstadial land biotas at Thule, Northwest Greenland   总被引:1,自引:0,他引:1  
Allochthonous macroscopic plant and animal remains from a shallow-water marine deposit from Northwest Greenland, assigned to the Early Weichselian/Wisconsinan, are indicative of arctic biotas dominated by herbaceous plants. The presence of several southern extralimital taxa show that summer temperatures were considerably higher than at present, presumably with a mean July temperature of about 8°C, as compared with c . 4°C at present.  相似文献   

5.
Sediments from the last interglacial (Eemian) in Jameson Land, East Greenland, and the Thule area, NW Greenland, have revealed a number of insect fragments of both arctic and more or less warmth‐demanding species. Altogether, the interglacial fauna of Coleoptera (beetles) indicates boreal conditions. Undoubtedly, a large fraction of the insect fauna succumbed when the mild Eemian climate cooled drastically during the last glacial stage. However, a group of hardy species now found far north into the High Arctic might be glacial survivors. It is, however, still puzzling why well‐adapted arctic beetle species such as Amara alpina and Isochnus arcticus did not survive the last glacial stage in Greenland. Two factors that have not been sufficiently considered when discussing survival contra extinction are the importance of microclimate and the number of sun‐hours during the Arctic summer. Even among the Coleoptera, which as a group fares quite badly in the Arctic, there might be survivors, at least among those found both during the interglacial and as fossils during the early Holocene. First of all, glacial survival applies to the seed bug Nysius groenlandicus, which was widespread during the Eemian, was found soon after the last deglaciation, and is now almost omnipresent in Greenland.  相似文献   

6.
Mean July and January temperatures are reconstructed from radiocarbon-dated fossil beetle assemblages, yielding a synthesis of palaeoclimatic history of the regions south of the Laurentide Ice Sheet in North America from 35 000 to 8500 yr BP. Mean July temperatures close to the last glacial maximum were 11–12°C colder than present; mean January temperatures were possibly 10–19°C colder. Mutual climatic range analyses of the beetle assemblages show warming of mean summer temperatures as early as 13.7 kyr, although ice-proximal sites were consistently about 5°C cooler than ice-distal sites. Late-glacial mean summer temperatures peaked between 12 and 11 kyr, then remained fairly constant through the early Holocene. Mean winter temperatures did not reach modern values until after 10 kyr.  相似文献   

7.
Pollen and plant macrofossil analyses from Svanåvatnet in northern Norway provide records of past vegetation and climate in this region from c . 8700 cal. yr BP until the present. Pollen accumulation rates and the presence of plant macrofossils indicate that Betula pubescens (birch) was present from c . 8600 cal. yr BP and Pinus sylvestris (pine) from c . 8200 cal. yr BP. Quantitative climate is reconstructed using modern pollen-climate transfer functions based on weighted-averaging partial least squares regression. A rapid increase in mean July temperature (Tjul) and mean annual precipitation (Pann) is inferred for the early Holocene. At times when tree abundance is at its highest and most diverse, inferred Tjul indicates maximum temperatures during the mid-Holocene of about 2°C warmer than at present. During the same time period, inferred Pann is 200–300 mm above present-day conditions until c . 3000 cal. yr BP. Mean January temperatures (Tjan) are reconstructed to be about 2°C warmer than today from 8000 to 3500 cal. yr BP. After 3500 cal. yr BP until today, a gradual decrease is seen in all the reconstructed climate parameters, together with a reduction in tree abundance and the development of a mosaic of open vegetation with grasses, dwarf shrubs and wet areas, and of woodland containing B. pubescens , P. sylvestris and Picea abies (spruce).  相似文献   

8.
Holocene climatic and paleoceanographic development of the SE Greenland Shelf is studied from cores MD99-2317 and MD99-2322, at sites north and south of the Denmark Strait, respectively. Lithofacies, IRD counts, calcium carbonate percentages, benthic and planktic foraminiferal assemblages and oxygen isotope analyses, and summer SSTs reveal significant climate variations in the Holocene driven by declining solar insolation and its interaction with waning continental ice sheets, and changing atmospheric pressure patterns. Large changes in the East Greenland and Irminger Currents and the Greenland Ice Sheet are manifested as a 4-part division of the Holocene. An early Holocene cold interval dominated by melting of the Greenland Ice Sheet and Polar Front retreat extends from 11.8 to 9.5 cal kyr BP. A cold interval from 9.5 to 8.1 cal kyr BP involved episodic cooling of the Irminger Current resulting from the last phases of Laurentide Ice Sheet deglaciation and delayed the Holocene optimum off East Greenland by 3 kyr relative to peak summer solar insolation, which likely helped to limit the early Holocene melting of the Greenland Ice Sheet. The period 8.1–3.5 cal kyr BP represents a climatic optimum interval of maximum Greenland Ice Sheet retreat and strong Irminger Current inflow to the Denmark Strait. Between 6.8 and 3.5 cal kyr BP, the Irminger Current penetrated further North into the Nordic Seas than has been observed in recent decades. This signal is consistent with diminished northerly winds, a weaker Greenland High and contracted subpolar gyre. By 5 cal kyr BP, periods of increased Polar Water and decreasing salinity in the Irminger Current suggest a transition toward expansion of the subpolar gyre and increased Polar Water in the EGC. The Neoglacial interval from 3.5 to 0.2 cal kyr BP was cold and variable with increased freshwater forcing from the Arctic Ocean, advance of the Greenland Ice Sheet and southward advance of the Polar Front. Enhanced northerly winds and a strengthened Greenland High are consistent with thicker and more extensive Polar Water and greatly diminished northward advection of Irminger Current in the Denmark Strait.  相似文献   

9.
在AMS14C精确定年的基础上,通过南海北部MD05-2905站高分辨率的氧同位素、粒度、元素分析,其结果显示所有指标均在11.2~8.5kaB.P.期间发生异常,根据夏季风指标认为这是夏季风极强事件。将本站位相同纬度(20°N)的夏季平均日辐射量与季风指标进行对比,发现全新世早期(11.2~8.5kaB.P.)东亚夏季风极强事件对应着夏季太阳辐射量最大值和热带辐合带(ITCZ)的位置向北移动,说明全新世早期夏季风突然增强可能是在岁差周期控制下,较高的太阳辐射量驱动了热带辐合带(ITCZ)及其有关的雨场向北移动,在南海北部产生了大量的降水,导致氧同位素偏负、碳酸盐的含量较低以及线性沉积速率较高。这与前人对相邻地区湖光岩玛珥湖的孢粉研究、江西南岭地区泥炭的记录以及中国南方石笋记录的研究结果相吻合。该季风最强事件与阿拉伯海发现的早全新世季风最强事件以及根据格陵兰冰芯记录的早全新世甲烷最大值推测低纬地区湿地扩张相一致,这反映了南海北部全新世早期与全球低纬地区早全新世气候变化格局一致。  相似文献   

10.
Subfossil bryophyte remains from Jameson Land, central East Greenland reveal diverse moss floras from the Langelandselv interglacial and the Hugin Sø interstadial. Around 30 species are reported as new subfossils from Greenland, indicating our insufficient knowledge of earlier bryophyte floras in the area. Among the species found from the Langelandselv interglacial. Several are southern and do not reach as far north as Jameson Land today, thus indicating a slightly warmer climate than at present in the area. The climate indications for the Hugin Sø interstadial are less clear, and further studies are necessary before delinitivc conclusions can he drawn. A large proportion of the found taxa indicate mineral-rich or intermediately mineral-rich conditions. Several wetland species indicate moving water, and a few sometimes or exclusively ( Sanionia nivalis ) occur in connection with late snow beds or meltwater brooks. Abundant material or the Polytrichaceae and of Racomitrum indicates that more or less unstable soil. with sparse vascular plant cover, was relatively abundant.  相似文献   

11.
《Quaternary Science Reviews》2005,24(10-11):1159-1182
A case is made that seasonality switches dominated by wintertime were instrumental in abrupt climate changes in the North Atlantic region during the last glaciation and into the Holocene. The primary evidence comes from mismatches between mean annual temperatures from Greenland ice cores in comparison with snowline changes in East Greenland, northern Europe, and North America. The most likely explanation is a shutdown (or reduction in strength) of the conveyor. This allows the spread of winter sea ice across the North Atlantic, thus causing the northern region to experience much colder winters. Because they mimic the Greenland temperature rather than the snowline signal, changes in the Atlantic Intertropical Convergence Zone and the Asian monsoon may also share a winter linkage with Greenland. Thus the paleoclimate record is consistent with the notion that a huge continental sector of the Northern Hemisphere, stretching from Greenland to Asia, was close to an extreme winter threshold during much of the last glaciation. Winter climate crossed this threshold repeatedly, with marked changes in seasonality that may well have amplified and propagated a signal of abrupt change throughout the hemisphere and into the tropics.  相似文献   

12.
A 2.9 m long sedimentary record was studied from a small lake, here referred to as Duck Lake, located at 76°25'N, 18°45'W on Store Koldewey, an elongated island off the coast of Northeast Greenland. The sediments were investigated for their geophysical and biogeochemical characteristics, and for their fossil chironomid assemblages. Organic matter began to accumulate in the lake at 9.1 cal. kyr BP, which provides a minimum age for the deglaciation of the basin. Although the early to mid-Holocene is known as a thermal maximum in East Greenland, organic matter accumulation in the lake remained low during the early Holocene, likely due to late plant immigration and lack of nutrient availability. Organic matter accumulation increased during the middle and late Holocene, when temperatures in East Greenland gradually decreased. Enhanced soil formation probably led to higher nutrient availability and increased production in the lake. Chironomids are abundant throughout the record after 9.1 cal. kyr BP and seem to react sensitively to changes in temperature and nutrient availability. It is concluded that relative temperature reconstructions based on biogeochemical data have to be regarded critically, particularly in the period shortly after deglaciation when nutrient availability was low. Chironomids may be a suitable tool for climatic reconstructions even in those high arctic environments. However, a better understanding of the ecology of chironomids under these extreme conditions is needed.  相似文献   

13.
毛乌素沙地全新世地层粒度组成特征及古气候意义   总被引:9,自引:3,他引:9  
分析结果显示,毛乌素沙地粒度自西北至东南逐渐变细、磁化率值逐渐变大。这一规律不仅表现在地表,而且在不同地点同一层位也有明显反映。说明了毛乌素沙地的形成过程与东亚季风联系密切。就所选剖面分析来看,本区在更新世晚期及全新世早期气候比较寒冷干燥,东亚冬季风影响较明显,此时为堆积成沙期,自北至南堆积的砂粒渐细,砂层渐薄;全新世中期气候温暖湿润,东亚夏季风影响显著,此时为较明显的成壤期,表现在自北至南普遍可见发育较好的黑垆土层,且南部的成壤作用比北部好,土壤的厚度也大;全新世晚期至今,气候向干冷的方向转化,但变化幅度远小于末次冰期  相似文献   

14.
Mutual Climatic Range (MCR) analysis was applied to 20 fossil beetle assemblages from 11 sites dating from 14,500 to 400 yr B.P. The fossil sites represent a transect of the Rocky Mountain region from northern Montana to central Colorado. The analyses yielded estimates of mean July and mean January temperatures. The oldest assemblage (14,500 yr B.P.) yielded mean July values of 10–11°C colder than present and mean January values 26–30°C colder than present. Postglacial summer warming was rapid, as indicated by an assemblage dating 13,200 yr B.P., with mean July values only 3–4°C cooler than modern. By 10,000 yr B.P., several assemblages indicate warmer-than-modern mean summer and winter values. By 9000 yr B.P., MCR reconstructions indicate that both summer and winter temperatures were already declining from an early Holocene peak. Mean July values remained above modern levels and mean January values remained below modern levels until 3000 yr B.P. A series of small-scale oscillations followed.  相似文献   

15.
The inflow of Atlantic Water to the Nordic seas from mid–late Younger Dryas to earliest Holocene (12 450–10 000 a BP) is reconstructed on the basis of a high‐resolution core (LINK14) from 346 m water depth on the east Faroe shelf. We have analysed the distribution of planktic and benthic foraminifera, stable isotopes and ice‐rafted debris (IRD), and calculated absolute temperatures and salinities by transfer functions. During the investigated time period there was almost continuous inflow of Atlantic Water to the Nordic seas. Deposition of IRD during the mid–late Younger Dryas and Pre‐Boreal coolings indicates the presence of melting icebergs and that summer sea surface temperatures were low. The east–west temperature gradient across the Faroe–Shetland Channel was much steeper than today. The cold conditions around the Faroe Islands are attributed to stronger East Greenland and East Icelandic currents than at present. The near‐continuous inflow of Atlantic Water is consistent with published evidence suggesting that deep convection took place in the Nordic seas, although the convection sites probably had shifted to a more easterly position than at present. Around the time of deposition of the Saksunarvatn Tephra c. 10 350 a BP, sea surface temperatures increased to the present level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
全新世中国热带北界变迁的探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
本文根据孢粉、动物群、石笋、珊瑚礁、红树林等约30个全新世古环境分析实例,认为年均气温变化2℃左右,就会引起热带界线的变动。热带北界的迁移过程可分3个阶段:全新世回暖期北返阶段(11000~8500aB.P.),热带北界北移1.5个纬度;升温期北进阶段(8500~5000aB.P.),向北推进3~5个纬度;降温期南归阶段(5000~3000aB.P.),向南回归1~4个纬度。热带北界的展布既有纬度地带性,也有经度地带性,这与东亚季风、寒潮、台风的影响以及地形格局有关。  相似文献   

17.
Palynology and sediment slumping in a high arctic Greenland lake   总被引:1,自引:1,他引:1  
A 103-cm core from a high arctic lake (80°49'N, 15°00'W) on Amdrup Land, NE Greenland has been analysed for pollen and other microfossils, as well as bulk samples from 10 cores for macrofossils. AMS 14C-dating of aquatic mosses ( Drepanocladus exannulatus and Scorpidiurn scorpioides ) revealed that the lowermost 90 cm of the core was deposited during a 1.5-2 ka interval in the early Holocene, before the appearance of Salix arctica which immigrated to N Greenland c . 7 ka BP. Armeria scabra , now extinct in the area, larval cases and apotomes of Apatcmiu zonella , today not known north of c. 77°N, and other indices point to a climate warmer than that of today. A thin, sandy layer 13 cm below the lake bottom, accompanied by marked changes in the content of pollen and macrofossils, such as the sudden occurrence of large amounts of Salix pollen and leaves, indicates a large hiatus. This is confirmed by the dating to c . 7 ka BP of mosses just below the sand, and of Salix leaves just above it to c . 1 ka BP. The hiatus must be caused by sediment slumping which transported all the sediment from the intervening period to the deeper part of the lake. A similar, sandy layer in the uppermost 2–6 cm may be caused by younger, (sub-)recent slumping, or both may be the result of the same disturbance. The possibility of a reservoir effect causing too old 14C-ages for the moss is discussed.  相似文献   

18.
Oxygen-isotope profiles for the Late-Glacial carbonate sediments from Red Bog and adjacent Lough Gur in County Limerick in western Ireland are readily correlated with the classical hiozones delineated on pollen diagrams for the same cores. The estimated summer temperatures of the Bølling/Allerød were as high as those in the early Holocene and are correlated with increasing Milankovitch summer insolation. This warm phase was abruptly terminated in the Younger Dryas cold episode by a depletion of 4% in δ18O, suggesting a summer atmospheric temperature decrease of about 12°C, comparable to that inferred from fossil beetle data. The Younger Dryas phase is attributed to a major cooling of the sea-surface temperature by a postulated discharge of icebergs similar to that of the Heinrich events, for the icebergs were much more effective than simple meltwater in cooling the sea surface and thus the climate over Europe. Shorter-term cool phases (Older Dryas. Gerzensee. Preboreal oscillation) are also recognized.  相似文献   

19.
Isoleucine epimerization (alle/Ue) ratios in the pelecypod Mya truncata and benthic foraminifer Cibicides lobalulus from emerged marine units in western Norway allow construction of a regional relative chronostratigraphy for the Ecmian and Weichselian. Two in situ interglacial sections are considered correlative by the similar biostratigraphy and alle/Ile ratios in C. lobalulus. Overlying sediments at the two sites are of both marine and glacial origin. Neither site contains a complete Weichselian record, but allelic ratios, lithostratigraphy and fauna! changes suggest at least four stadial and three interstadial events occurred along the western Norwegian coast during Early and Middle Weichselian time. Kinetic data defining the relationship between the isoleucine epimerization rate constant and temperature for the species studied allow the estimation of paleotemperatures for samples of known age. Accepting published age estimates for the Eemian interglacial beds, the average Weichselian temperature in western Norway is calculated to have been ca. 4°C below the average Holocene temperature, whereas the last interglacial was 1 to 2°C warmer that the Holocene. The limited temperature depression over this region during the Weichselian implies that coastal western Norway was ice-covered only about 30% of this period, and that Atlantic water, although not necessarily in a warm surface current as today, entered the Norwegian Sea during much of marine isotope stage 5 and intermittently during stage 3. Interpolated amino acid ages date interstadial events at ca. 94 ka, 78 ka and 52 ka, B.P., whereas glacial events are dated ca. 103 ka and bracketed by limiting dates between 78 and 89 ka, between 52 and 63 ka and less than 36 ka B.P.  相似文献   

20.
Heikkilä, M. & Seppä, H. 2010: Holocene climate dynamics in Latvia, eastern Baltic region: a pollen‐based summer temperature reconstruction and regional comparison. Boreas, Vol. 39, pp. 705–719. 10.1111/j.1502‐3885.2010.00164.x. ISSN 0300‐9483. A pollen‐based summer temperature (Tsummer) reconstruction reveals the Holocene climate history in southeastern Latvia and contributes to the limited understanding of past climate behaviour in the eastern sector of northern Europe. Notably, steady climate warming of the early Holocene was interrupted c. 8350–8150 cal. yr BP by the well‐known 8.2 ka cold event, recorded as a decrease of 0.9 to 1.8 °C in Tsummer. During the Holocene Thermal Maximum, c. 8000–4000 cal. yr BP, the reconstructed summer temperature was ~2.5–3.5 °C higher than the modern reconstructed value, and subsequently declined towards present‐day values. Comparison of the current reconstruction with other pollen‐based reconstructions in northern Europe shows that the 8.2 ka event is particularly clearly reflected in the Baltic region, possibly as a result of distinct climatic and ecological gradients and the sensitivity of the vegetation growth pattern to seasonal temperature change. The new reconstruction also reveals that the Holocene Thermal Maximum was warmer in Latvia than in central Europe and Fennoscandia. In fact, a gradient of increasing positive temperature anomalies is detected from northernmost Fennoscandia towards the south and from the Atlantic coast in Norway towards the continental East European Plain. The dynamics of the temperate broadleaved tree species Tilia and Quercus in Latvia and adjacent northern Europe during the mid‐Holocene give complementary information on the multifaceted climatic and environmental changes in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号