首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Geology-based methods for Probabilistic Seismic Hazard Assessment (PSHA) have been developing in Italy. These methods require information on the geometric, kinematic and energetic parameters of the major seismogenic faults. In this paper, we define a model of 3D seismogenic sources in the central Apennines of Italy. Our approach is mainly structural-seismotectonic: we integrate surface geology data (trace of active faults, i.e. 2D features) with seismicity and subsurface geological–geophysical data (3D approach). A fundamental step is to fix constraints on the thickness of the seismogenic layer and deep geometry of faults: we use constraints from the depth distribution of aftershock zones and background seismicity; we also use information on the structural style of the extensional deformation at crustal scale (mainly from seismic reflection data), as well as on the strength and behaviour (brittle versus plastic) of the crust by rheological profiling. Geological observations allow us to define a segmentation model consisting of major fault structures separated by first-order (kilometric scale) structural-geometric complexities considered as likely barriers to the propagation of major earthquake ruptures. Once defined the 3D fault features and the segmentation model, the step onward is the computation of the maximum magnitude of the expected earthquake (M max). We compare three different estimates of M max: (1) from association of past earthquakes to faults; (2) from 3D fault geometry and (3) from geometrical estimate corrected by earthquake scaling laws. By integrating all the data, we define a model of seismogenic sources (seismogenic boxes), which can be directly used for regional-scale PSHA. Preliminary applications of PSHA indicate that the 3D approach may allow to hazard scenarios more realistic than those previously proposed.  相似文献   

2.
The Pollino Range area represents the mostprominent gap in seismicity within thesouthern Apennines. Geomorphic andtrenching investigations along theCastrovillari fault indicate that thisnormal fault is a major seismogenic faultwithin the southern part of this gap. Atleast four surface-faulting earthquakeshave occurred on this fault since latePleistocene age. Radiocarbon dating coupledwith historical consideration set thetime of the most recent earthquake as mostlikely to be between 530 A.D. and 900 A.D.,with the possible widest interval of530–1100 A.D. No evidence for this eventhas been found in the historical records,although its age interval falls within thetime spanned by the seismic catalogues.Slip per event ranges between 0.5 and1.6 m, with a minimum rupture length of13 km. These values suggest a M 6.5–7.0 forthe paleoearthquakes. The minimum long-termvertical slip rate obtained from displacedgeomorphic features is of 0.2–0.5 mm/yr. Avertical slip-rate of about 1 mm/yr is alsoinferred from trenching data. Theinter-event interval obtained from trenchdata ranges between 940 and 7760 years(with the young part of the intervalpossibly more representative; roughly940–3000 years). The time elapsed since themost recent earthquake ranges between aminimum of 900–1100 and a maximum of 1470years. The seismic behavior of this faultappears to be consistent with that of othermajor seismogenic faults of thecentral-southern Apennines. The Pollinocase highlights the fact thatgeological investigations represent apotentially useful technique tocharacterize the seismic hazard of `silent' areas for which adequate historical andseismological data record are notavailable.  相似文献   

3.
Previous studies of the stress regime in the northern Apennines report compression in the outer sector and extension in the inner sector. In this study we focus on the relationships between the two regimes and, by making use of 54 focal mechanism solutions, we try to shed some more light on a tectonic setting that appears more complex than the previous models. The focal mechanisms, computed using the first onset technique, are inverted for stress parameters. The method applied requires subdividing the volume to be investigated into homogeneous sectors: to comply with the complexity of the area under study, we included depth as a parameter for sub-zoning. Our results show that the shallow regime (0–10 km of depth) is transtensive even in the sector previously reported to be compressive. In fact, at a shallow depth, very few thrust focal solutions lie in a spatially limited sector in the eastern part of the area under study. Just below 10 km in depth, the stress regime converts to transpressional: stress axes are approximately inverted. Deeper than 45 km, thrust solutions are found. They are not numerous enough to perform an inversion but indicate the existence of a compressional regime at depth. It is worth noting that a gap of seismicity is observed in the layer 30–45 km.  相似文献   

4.
The present study focuses on the morphotectonic evolution of the axial portion of the Southern Apennine chain between the lower Calore River valley and the northern Camposauro mountain front (Campania Region). A multidisciplinary approach was used, including geomorphological, field‐geology, stratigraphical, morphotectonic, structural, 40Ar/39Ar and tephrostratigraphical data. Results indicate that, from the Lower Pleistocene onwards, this sector of the chain was affected by extensional tectonics responsible for the onset of the sedimentation of Quaternary fluvial, alluvial fan and slope deposits. Fault systems are mainly composed of NW‐SE, NE–SW and W‐E trending strike‐slip and normal faults, associated to NW‐SE and NE–SW oriented extensions. Fault scarps, stratigraphical and structural data and morphotectonic indicators suggest that these faults affected the wide piedmont area of the northern Camposauro mountain front in the Lower Pleistocene–Upper Pleistocene time span. Faults affected both the oldest Quaternary slope deposits (Laiano Synthem, Lower Pleistocene) and the overlying alluvial fan system deposits constrained between the late Middle Pleistocene and the Holocene. The latter are geomorphologically and chrono‐stratigraphically grouped into four generations, I generation: late Middle Pleistocene–early Upper Pleistocene, with tephra layers 40Ar/39Ar dated to 158±6 and 113±7 ka; II generation: Upper Pleistocene, with tephra layers correlated with the Campanian Ignimbrite (39 ka) and with the slightly older Campi Flegrei activity (40Ar/39Ar age 48±7 ka); III generation: late Upper Pleistocene–Lower Holocene, with tephra layers correlated with the Neapolitan Yellow Tuff (~15 ka); IV generation: Holocene in age. The evolution of the first three generations was controlled by Middle Pleistocene extensional tectonics, while Holocene fans do not show evidence of tectonic activity. Nevertheless, considering the moderate to high magnitude historical seismicity of the study area, we cannot rule out that some of the recognized faults may still be active. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号