首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A natural nuclear fission reactor operating in the center of the Earth has been proposed by Herndon (Hollenbach and Herndon, 2001) as the energy source that powers the geo-magnetic field. The upper limit on the expected geo-reactor power is set by the estimated 12 TW (Buffett, 2003) heat flow from the Earth’s core. If it exists, a nuclear reactor of that size emits a strong anti-neutrino flux. Emitted electron anti-neutrinos can be detected by the Kamioka liquid scintillator anti-neutrino detector (KamLAND) (Raghavan, 2002), and the geo-reactor power level is proporional to the anti-neutrino emission rate. KamLAND measures the geo-reactor power as a constant positive offset in detected anti-neutrino rate on top of the varying anti-neutrino rate coming from man-made reactors. Here we present the first attempt to measure the geo-reactor power. Based on a 776 ton-year exposure of KamLAND to electron anti-neutrinos, the detected flux corresponds to (6 ± 6) TW. The upper limit on the geo-reactor power at 90% confidence level is 18 TW, which is below the lower limit of the total Earth’s radiogenic heat, estimated to be between 19 and 31TW (Anderson, 2003).  相似文献   

3.
The KamLAND liquid scintillator detector demonstrated the detection of antineutrinos produced by natural radioactivities in the Earth, so-called geoneutrinos. Although this first result of geoneutrinos is consistent with current geophysical models, more accurate measurements are essential to provide a new window for exploring the inside of the Earth. In this article I would like to discuss the future prospects of KamLAND geoneutrino detection, and the possibility of directional measurement of incoming geoneutrinos. It is interesting to consider the application of geoneutrino detectors to measurements of other neutrino signals. The possibility of detecting the solar 7Be, pep and CNO neutrinos is discussed. A new type detector concept is proposed not only to explore the precise measurement of reactor neutrino oscillations but also to enable us to realize the neutrino tomography inside the Earth.  相似文献   

4.
Long distance detection of electron anti-neutrinos from reactors at distances of order 200 km has been achieved with the 1000 ton liquid scintillator-based KamLAND instrument in Japan. In summer 2005 the KamLAND group reported the first detection of anti-neutrinos from the natural radioactivity of the earth. These measurements are due to uranium and thorium decays dominantly from the nearby crust in Japan, and are expected to have only a small contribution from the earth’s mantle (and core). Several new detectors are under consideration around the world for measurements which when taken together can reveal the location of these heavy elements, which are expected to contribute a major share of the internal earth’s heating via their radioactivity. This heating is of course associated with providing the power to drive the geomagnetic field and plate tectonics. Geologists have only indirect evidence about the deep earth, mostly from seismic wave velocity and inferences from a few meteorites. Anti-neutrino detection, on the other hand, yields direct information about earth’s interior. The location and magnitude of the earth’s uranium and thorium are crucial to understanding the origin and evolution of the earth and present day activity. Lead Article in Proceedings of Neutrino Sciences 2005  相似文献   

5.
In the forthcoming months, the KamLAND experiment will probe the parameter space of the solar large mixing angle MSW solution as the origin of the solar neutrino deficit with ’s from distant nuclear reactors. If however the solution realized in nature is such that Δm2sol2×10−4 eV2 (thereafter named the HLMA region), KamLAND will only observe a rate suppression but no spectral distortion and hence it will not have the optimal sensitivity to measure the mixing parameters. In this case, we propose a new medium baseline reactor experiment located at Heilbronn (Germany) to pin down the precise value of the solar mixing parameters. In this paper, we present the Heilbronn detector site, we calculate the interaction rate and the positron spectrum expected from the surrounding nuclear power plants. We also discuss the sensitivity of such an experiment to |Ue3| in both normal and inverted neutrino mass hierarchy scenarios. We then outline the detector design, estimate background signals induced by natural radioactivity as well as by in situ cosmic ray muon interaction, and discuss a strategy to detect the anti-neutrino signal ‘free of background’.  相似文献   

6.
Necessary technical experience is being gained from successful construction and deployment of current prototype detectors to search for UHE neutrinos in Antarctica, Lake Baikal in Russia, and the Mediterranean. The prototype detectors have also the important central purpose of determining whether or not UHE neutrinos do in fact exist in nature by observation of at least a few UHE neutrino-induced leptons with properties that are not consistent with expected backgrounds. We discuss here the criteria for a prototype detector to accomplish that purpose in a convincing way even if the UHE neutrino flux is substantially lower than predicted at present.  相似文献   

7.
The Kamioka liquid scintillator antineutrino detector (KamLAND), which consists of 1000 tones of ultra-pure liquid scintillator surrounded by 1879 photo-multiplier tubes (PMT), is the first detector sensitive enough to detect geoneutrinos. Earth models suggest that KamLAND observes geoneutrinos at a rate of 30 events/1032-protons/year from the 238U decay chain, and 8 events/1032-protons/year from the 232Th decay chain. With 7.09×1031 proton-years of detector exposure and detection efficiency of 0.687 ± 0.007, the ‘rate-only’ analysis gives geoneutrino candidates. Assuming a Th/U mass concentration ratio of 3.9, the ‘rate + shape’ analysis gives the 90% confidence interval for the total number of geoneutrinos detected to be from 4.5 to 54.2. This result is consistent with predictions from the Earth models. The 99% C.L. upper limit is set at 1.45×10−31 events per target proton per year, which is 3.8 times higher than the central value of the model prediction that gives 16 TW of radiogenic heat production from 238U and 232Th. Although the present data have limited statistical power, they provide by direct means an upper limit for the Earth’s radiogenic heat of U and Th. Sanshiro Enomoto (on behalf of the KamLAND Collaboration)  相似文献   

8.
Decays of radionuclides throughout the earth’s interior produce geothermal heat, but also are a source of antineutrinos; these geoneutrinos are now becoming observable in experiments such as KamLAND. The (angle-integrated) geoneutrino flux has been shown to provide a unique probe of geothermal heating due to decays, and an integral constraint on the distribution of radionuclides in the earth. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radial distribution of terrestrial radionuclides. We develop the general formalism for the neutrino angular distribution. We also present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the earth’s interior, but offer a direct measure of the radioactive earth, both revealing the earth’s inner structure as probed by radionuclides, and allowing a complete determination of the radioactive heat generation as a function of radius. Turning to specific models, we emphasize the very useful approximation in which the earth is modeled as a series of shells of uniform density. Using this multishell approximation, we present the geoneutrino angular distribution for the favored earth model which has been used to calculate the geoneutrino flux. In this model the neutrino generation is dominated by decays of potassium, uranium, and thorium in the earth’s mantle and crust; this leads to a very “peripheral” angular distribution, in which 2/3 of the neutrinos come from angles θ ≳ 60° away from the nadir. We note that a measurement of the neutrino intensity in peripheral directions leads to a strong lower limit to the central intensity. We briefly discuss the challenges facing experiments to measure the geoneutrino angular distribution. Currently available techniques using inverse beta decay of protons require a (for now) unfeasibly large number of events to recover with confidence the forward scattering signal from the background of subsequent elastic scatterings. Nevertheless, it is our hope that future large experiments, and/or more sensitive techniques, can resolve an image of the earth’s radioactive interior.  相似文献   

9.
We present spectropolarimetry of the solid CO feature at 4.67 μm along the line of sight to Elias 16, a field star background to the Taurus dark cloud. A clear increase in polarization is observed across the feature with the peak of polarization shifted in wavelength relative to the peak of absorption. This shows that dust grains in dense, cold environments (temperatures ∼20 K or less) can align and produce polarization by dichroic absorption. For a grain model, consisting of a core with a single mantle, the polarization feature is best modelled by a thick CO mantle, possibly including 10 per cent water-ice, with the volume ratio of mantle to bare grain of ∼5. Radiative torques could be responsible for the grain alignment provided the grain radius is at least 0.5 μm. This would require the grain cores to have a radius of at least 0.3 μm, much larger than grain sizes in the diffuse interstellar medium. Sizes of this order seem reasonable on the basis of independent evidence for grain growth by coagulation, as well as mantle formation, inside dense clouds.  相似文献   

10.
Jun Kimura  Takashi Nakagawa 《Icarus》2009,202(1):216-224
Ganymede has an intrinsic magnetic field which is generally considered to originate from a self-excited dynamo in the metallic core. Driving of the dynamo depends critically on the satellite's thermal state and internal structure. However, the inferred structure based on gravity data alone has a large uncertainty, and this makes the possibility of dynamo activity unclear; variations in core size and composition significantly change the heat capacity and alter the cooling history of the core. The main objectives of this study is to explore the structural conditions for a currently active dynamo in Ganymede using numerical simulations of the thermal history, and to evaluate under which conditions Ganymede can maintain the dynamo activity at present. We have investigated the satellite's thermal history using various core sizes and compositions satisfying the mean density and moment of inertia of Ganymede, and evaluate the temperature and heat flux at the core-mantle boundary (CMB). Based on the following two conditions, we evaluate the possibility of dynamo activity, thereby reducing the uncertainty of the previously inferred interior structure. The first condition is that the temperature at the CMB must exceed the melting point of a metallic core, and the second is that the heat flux through the CMB must exceed the adiabatic temperature gradient. The mantle temperature starts to increase because of the decay of long-lived radiogenic elements in the rocky mantle. After a few Gyr, radiogenic elements are exhausted and temperature starts to decrease. As the rocky mantle cools, the heat flux at the CMB steadily increases. If the temperature and heat flux at the CMB satisfy these conditions simultaneously, we consider the case as capable of driving a dynamo. Finally, we identify the Dynamo Regime, which is the specific range of internal structures capable of driving the dynamo, based on the results of simulations with various structures. If Ganymede's self-sustained magnetic field were maintained by thermal convection, the satellite's metallic core would be relatively large and, in comparison to other terrestrial-type planetary cores, strongly enriched in sulfur. The dynamo activity and the generation of the magnetic field of Ganymede should start from a much later stage, possibly close to the present.  相似文献   

11.
A. Rivoldini  T. Van Hoolst 《Icarus》2011,213(2):451-472
Knowledge of the interior structure of Mars is of fundamental importance to the understanding of its past and present state as well as its future evolution. The most prominent interior structure properties are the state of the core, solid or liquid, its radius, and its composition in terms of light elements, the thickness of the mantle, its composition, the presence of a lower mantle, and the density of the crust. In the absence of seismic sounding only geodesy data allow reliably constraining the deep interior of Mars. Those data are the mass, moment of inertia, and tides. They are related to Mars’ composition, to its internal mass distribution, and to its deformational response to principally the tidal forcing of the Sun. Here we use the most recent estimates of the moment of inertia and tidal Love number k2 in order to infer knowledge about the interior structure of the Mars.We have built precise models of the interior structure of Mars that are parameterized by the crust density and thickness, the volume fractions of upper mantle mineral phases, the bulk mantle iron concentration, and the size and the sulfur concentration of the core. From the bulk mantle iron concentration and from the volume fractions of the upper mantle mineral phases, the depth dependent mineralogy is deduced by using experimentally determined phase diagrams. The thermoelastic properties at each depth inside the mantle are calculated by using equations of state. Since it is difficult to determine the temperature inside the mantle of Mars we here use two end-member temperature profiles that have been deduced from studies dedicated to the thermal evolution of Mars. We calculate the pressure and temperature dependent thermoelastic properties of the core constituents by using equations state and recent data about reference thermoelastic properties of liquid iron, liquid iron-sulfur, and solid iron. To determine the size of a possible inner core we use recent data on the melting temperature of iron-sulfur.Within our model assumptions the geodesy data imply that Mars has no solid inner core and that the liquid core contains a large fraction of sulfur. The absence of a solid inner is in agreement with the absence of a global magnetic field. We estimate the radius of the core to be 1794 ± 65 km and its core sulfur concentration to be 16 ± 2 wt%. We also show that it is possible for Mars to have a thin layer of perovskite at the bottom of the mantle if it has a hot mantle temperature. Moreover a chondritic Fe/Si ratio is shown to be consistent with the geodesy data, although significantly different value are also possible. Our results demonstrate that geodesy data alone, even if a mantle temperature is assumed, can almost not constrain the mineralogy of the mantle and the crust. In order to obtain stronger constraints on the mantle mineralogy bulk properties, like a fixed Fe/Si ratio, have to be assumed.  相似文献   

12.
The interaction mean-free-path of cosmic-ray iron in air has been determined by observing the change in flux as a function of atmospheric depth. A large detector and a large variation in altitude during the balloon flight result in a high precision measurement. The result is in agreement, though slightly larger than the mean-free-path deduced from the measurements of interactions of iron on different targets at the Bevalac accelerator.  相似文献   

13.
The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection. Recent hypotheses target the core-mantle boundary (CMB) as a major source of natural radionuclides and therefore of radiogenic heat. A typical scale of the processes that take place at the CMB is about 200 km. To observe these processes from the surface requires an angular resolution of about 3°. EARTH aims at creating a high-resolution 3D-map of the radiogenic heat sources in the Earth’s interior. It will thereby contribute to a better understanding of a number of geophysical phenomena observed at the Earth’s surface. This condition requires a completely different approach from the monolithic detector systems as e.g. KamLAND. This paper presents, for such telescopes, the boundary conditions set by physics, the estimated count rates, and the first initial results from Monte-Carlo simulations and laboratory experiments. The Monte-Carlo simulations indicate that the large volume telescope should consist of detector modules each comprising a very large number of detector units, with a cross section of roughly a few square centimetres. The signature of an antineutrino event will be a double pulse event. One pulse arises from the slowing down of the emitted positron, the other from the neutron capture. In laboratory experiments small sized, 10B-loaded liquid scintillation detectors were investigated as candidates for direction sensitive, low-energy antineutrino detection.  相似文献   

14.
The current supernova detection technique used in IceCube relies on the sudden deviation of the summed photomultiplier noise rate from its nominal value during the neutrino burst, making IceCube a ≈3 Megaton effective detection volume - class supernova detector. While galactic supernovae can be resolved with this technique, the supernova neutrino emission spectrum remains unconstrained and thus presents a limited potential for the topics related to supernova core collapse models.The paper elaborates analytically on the capabilities of IceCube to detect supernovae through the analysis of hits in the detector correlated in space and time. These arise from supernova neutrinos interacting in the instrumented detector volume along single strings. Although the effective detection volume for such coincident hits is much smaller (?35 kton, about the scale of SuperK), a wealth of information is obtained due to the comparatively low rate of coincident noise hits. We demonstrate that a neutrino flux from a core collapse supernova will produce a signature enabling the resolution of rough spectral features and, in the case of a strong signal, providing indication on its location.We further discuss the enhanced potential of a rather modest detector extension, a denser array in the center of IceCube, within our one dimensional analytic calculation framework. Such an extension would enable the exploration of the neutrino sky above a few GeV and the detection of supernovae up to a few 100’s of kilo parsec. However, a 3-4 Mpc detection distance, necessary for routine supernova detection, demands a significant increase of the effective detection volume and can be obtained only with a more ambitious instrument, particularly the boosting of sensor parameters such as the quantum efficiency and light collection area.  相似文献   

15.
At least 20 impact basins with diameters ranging from 1000 to 3380 km have been identified on Mars, with five exceeding 2500 km. The coincidental timing of the end of the sequence of impacts and the disappearance of the global magnetic field has led to investigations of impact heating crippling an early core dynamo. The rate of core cooling (and thus dynamo activity) is limited by that of the overlying mantle. Thus, the pre-existing thermal state of the mantle controls the extent to which a sequence of impacts may affect dynamo activity. Here, we examine the effects of the initial thermal structure of the core and mantle, and the location of an impact with respect to the pre-existing convective structure on the mantle dynamics and surface heat flux.We find that the impacts that formed the five largest basins dominate the impact-driven effects on mantle dynamics. A single impact of this size can alter the entire flow field of the mantle. Such an impact promotes the formation of an upwelling beneath the impact site, resulting in long-lived single-plume convection. The interval between the largest impacts is shorter than the initial recovery time for a single impact. Hence, the change in convective pattern due to each impact sets up a long term change in the global heat flow. These long-term changes are cumulative, and multiple impacts have a synergistic effect.  相似文献   

16.
C.C. Reese  V.S. Solomatov 《Icarus》2010,207(1):82-359
During late-stage planet formation, giant impacts produce localized mantle melt regions within which impactor iron droplets settle to the bottom near a permeability horizon. After accumulation, iron heated by the impact migrates downward to the core through colder, mostly solid mantle. The degree of thermal equilibration and partitioning of viscous heating between impactor iron and silicates depends on the mechanism of iron transport to the core. Simple estimates suggest that, following a giant impact, the temperature difference between iron delivered to the core and the mantle outside the impact heated region can be ∼103 K. Hot impactor iron mergers with the core where it may be efficiently mixed or remain stratified due to thermal buoyancy. In either case, collisional energy carried to the core by impactor iron helps establish conditions favorable for early core cooling and dynamo generation. In this study, we consider the end-member scenario in which impactor iron forms a layer at the top of the core. Energy transfer from the impactor iron layer to the mantle is sufficient to power a dynamo for up to ∼30 Myr even in the limit of a very viscous mantle and heat flux limited by conduction. Using two-dimensional finite element calculations of mantle convection, we show that large-scale mantle flow driven by the buoyancy of the impact thermal anomaly focuses plumes in the impact region and increases both dynamo strength and duration. Melting within the mantle thermal boundary layer likely leads to formation of a single superplume in the location of the impact anomaly driven upwelling. We suggest that formation of magnetized southern highland crust may be related to spreading and differentiation of an impact melt region during the impact-induced dynamo episode.  相似文献   

17.
The Optical and UV Monitor (OM), is a small telescope co-aligned with the main XMM-Newton X-ray telescopes. It can perform imaging with six broad band lenticular filters covering the range 180 nm to 600 nm. In addition, two grisms allow the user to obtain low resolution spectra in the same range. The detector is an intensified CCD. The instrument is fully calibrated in the standard UBV Johnson system and also in absolute flux for both filters and grisms. We describe the instrument and its calibration. We present some results and usage statistics.  相似文献   

18.
The Large Observatory For X-ray Timing (LOFT) is one of the candidate missions selected by the European Space Agency for an initial assessment phase in the Cosmic Vision programme. It is proposed for the M3 launch slot and has broad scientific goals related to fast timing of astrophysical X-ray sources. LOFT will carry the Large Area Detector (LAD), as one of the two core science instruments, necessary to achieve the challenging objectives of the project. LAD is a collimated detector working in the energy range 2-50 keV with an effective area of approximately 10 m 2at 8 keV. The instrument comprises an array of modules located on deployable panels. Lead-glass microchannel plate (MCP) collimators are located in front of the large-area Silicon Drift Detectors (SDD) to reduce the background contamination from off-axis resolved point sources and from the diffuse X-ray background. The inner walls of the microchannel plate pores reflect grazing incidence X-ray photons with a probability that depends on energy. In this paper, we present a study performed with an ad-hoc simulator of the effects of this capillary reflectivity on the overall instrument performance. The reflectivity is derived from a limited set of laboratory measurements, used to constrain the model. The measurements were taken using a prototype collimator whose thickness is similar to that adopted in the current baseline design proposed for the LAD. We find that the experimentally measured level of reflectivity of the pore inner walls enhances the off-axis transmission at low energies, producing an almost flat-top response. The resulting background increase due to the diffuse cosmic X-ray emission and sources within the field of view does not degrade the instrument sensitivity.  相似文献   

19.
Depth-dependent interior structure models of Mercury are calculated for several plausible chemical compositions of the core and of the mantle. For those models, we compute the associated libration amplitude, obliquity, tidal deformation, and tidal changes in the external potential. In particular we study the relation between the interior structure parameters for five different mantle mineralogies and two different temperature profiles together with two extreme crust density values. We investigate the influence of the core light element concentration, temperature, and melting law on core state and inner and outer core size. We show that a sulfur concentration above 10 wt% is unlikely if the temperature at the core-mantle boundary is above 1850 K and the silicate shell at least 240 km thick. The interior models can only have an inner core if the sulfur weight fraction is below 5 wt% for core-mantle boundary temperature in the 1850-2200 K range. Within our modeling hypotheses, we show that with the expected precision on the moment of inertia the core size can be estimated to a precision of about 50 km and the core sulfur concentration with an error of about 2 wt%. This uncertainty can only be reduced when more information on the mantle mineralogy of Mercury becomes available. However, we show that the uncertainty on the core size estimation can be greatly reduced, to about 25 km, if tidal surface displacements and tidal variations in the external potential are considered.  相似文献   

20.
We perform Monte Carlo simulations of cosmic ray-induced hard X-ray radiation from the Earth's atmosphere. We find that the shape of the spectrum emergent from the atmosphere in the energy range 25–300 keV is mainly determined by Compton scatterings and photoabsorption, and is almost insensitive to the incident cosmic ray spectrum. We provide a fitting formula for the hard X-ray surface brightness of the atmosphere as would be measured by a satellite-borne instrument, as a function of energy, solar modulation level, geomagnetic cut-off rigidity and zenith angle. A recent measurement by the INTEGRAL observatory of the atmospheric hard X-ray flux during the occultation of the cosmic X-ray background by the Earth agrees with our prediction within 10 per cent. This suggests that Earth observations could be used for in-orbit calibration of future hard X-ray telescopes. We also demonstrate that the hard X-ray spectra generated by cosmic rays in the crusts of the Moon, Mars and Mercury should be significantly different from that emitted by the Earth's atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号