首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
One of the major drawbacks of the conventional method of land reclamation, which involves mixing cement with the dredged soils at the disposal site, is the high cost associated with its manufacturing and transportation. In this study, a new solidified dredged fill (SDF) technique and a new additive are proposed and their practical applications are discussed. Unlike the conventional approach, the dredged marine soils were mixed with the solidifiers using a newly designed mixing technique prior to its transport to site, which would significantly reduce the cost of site machinery and effectively reclaim land with adequate engineering properties necessary for the construction of infrastructure. To evaluate the performance of the reclaimed land using the proposed technique, a series of laboratory and field tests (namely, static and dynamic cone penetration tests, and plate load tests) were conducted on grounds filled with and without solidified dredged marine soils, respectively. The results showed that the engineering behavior of the reclaimed land with dredged marine soils using SDF technique had significantly improved. The SDF technique combined with the newly designed mixing system improved the performance of ground and has thus proved to be both cost-effective and safe.  相似文献   

2.
Abstract

The use of soft clay and dredged marine clays as the construction material is challenging. This is because the high water content, high compressibility and low permeability of the clay causing the instability of ground and structure. This detrimental effect of soft clay can be improved by the cement solidification process, which is relatively cheap and efficient. This paper mainly focuses on the study of improvement on the mechanical behavior of cement mixed marine clay. The soil is reconstituted by using ordinary Portland cement of 5%, 10%, 15% and 20% by its mass. The study reveals that cementation of clay significantly improves the peak and residual strength of soil. Similarly, the primary yield stress of the soil is also improved from 16 to 275?kPa as cement content increases from 5% to 20%, respectively. By using statistical tools, the relationships between various parameters are established, which are very important to define the mechanical behavior of the clay. This study reveals that the yield surface of the solidified marine clay is not a smooth elliptical surface. Rather it is composed of two linear surfaces followed by a log-linear surface which can be modeled by using simple parameters obtained from triaxial tests.  相似文献   

3.
The present article discusses the stress–strain behavior and critical state parameters of the dredged Chennai marine clay stabilized with low cement content (2.5–10%). A series of one-dimensional consolidation tests and consolidated undrained tri-axial tests are performed on the cement stabilized dredged Chennai marine clay to evaluate the critical state parameters (λ, κ, M, Г, N) for varying cement contents and curing days. The results show that the slope of the critical state line M increases with an increase in the cement content. The parameter λ for the treated marine clay increases up to a cement content of 7.5% followed by a reduction. The parameter κ decreases with the addition of cement content. Finally, empirical formulations are proposed to predict the critical state parameters as the functions of the cement's contents and curing days.  相似文献   

4.
ABSTRACT

Strength and stiffness properties of materials are widely studied and used in civil engineering practice. However, most studies are based on unconfined conditions, which are different from real status of soil. This study investigated the primary yielding and yield locus for cement-stabilized marine clay. In this study, two types of cement-stabilized soils were studied through isotropic compression, triaxial drained shearing, unconfined compression, and bender element testing. Specimens with 20–50% of cement content and 7–90 days of curing period were used for the tests. Stress–strain behavior and primary yielding were evaluated, followed by construction of the primary yield locus. The characteristics of the primary yield locus and its development with curing time then were studied. The results showed that the properties of the primary yield locus were dependent on the type of stabilized soil, but were independent of the cement content and curing period. Thus, the approach provides a way to estimate the primary yield stress and drained stress path before primary yielding for cement-stabilized soil under confined condition. An empirical function was used to fit the primary yield locus. The primary isotropic yield stress was correlated to unconfined compressive strength or maximum shear modulus. Three indirect methods were proposed to predict the primary yield stress for cement-stabilized marine clay. The results showed that the primary yield stress can be estimated with reasonable accuracy.  相似文献   

5.
Abstract

River-dredged sludge has a high water content and minimal bearing capacity and strength. Adding cement, fly ash, and slag to dredged sludge as a combined curing agent can quickly reduce its water content and improve its strength. This study experimentally investigates the solidification effectiveness of different proportions of curing agents using methods including electron microscopy, particle size analysis, water ratio limit, and water content and direct shear tests. The water content and shear strength of different combined curing agents are obtained at different ages. We find that an optimum curing agent combination exists. With increases in fly ash and slag content, test results indicate that the water content of solidified sludge first decreases and then increases, whereas the shear strength first increases and then decreases, allowing an optimal combination curing agent to be obtained. When using industrial waste residue as curing agent, it is necessary to consider the negative effects of the curing agent to better control the dosage so as to achieve better curing effect.  相似文献   

6.
Unconfined and triaxial compression tests were carried out to examine the behavior of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged soils, and cement with respect to initial water content. The stress-strain behavior of LWS are analyzed with varying initial water content and silt contents of dredged soils, cement ratio, and confined stress. As initial water contents increase, the compressibility index increases and the preconsolidation pressure was vice versa. As initial water contents increase, the slope of stress-strain curve in elastic zone increases and strain rate at failure decreases and the strain rate at failure was not changed by the being of foams. As initial water contents increase, a compressive strength of LWS decreases. The decrement ratio of compressive strength of LWS with foams increases as cement content increases and initial water contents decreases. The compressive strength increases as silt contents increases.  相似文献   

7.
In this paper, a comprehensive study on simulating the shearing behavior of frictional materials is performed. A set of two explicit equations, describing the relationship among the shear stress ratio and the distortional strain and the volumetric strain, are formulated independently. The equations contain three stress parameters and three strain parameters and another parameter representing the nonuniformity of stress and strain during softening. All the parameters have clear physical significance and can be determined experimentally. It is demonstrated that the proposed equations have the capacity of simulating the complicated shearing behavior of many types of frictional materials including geomaterials. The proposed equations are used to simulate the stress–strain behavior for 27 frictional materials with 98 tests. These materials include soft and stiff clays in both reconstituted and structured states, silicon sands and calcareous sands, silts, compacted fill materials, volcanic soils, decomposed granite soils, cemented soils (both artificially and naturally cemented), partially saturated soils, ballast, rocks, reinforced soils, tire chips, sugar, wheat, and rapeseed. It has been demonstrated that the proposed explicit constitutive equations have the capacity to capture accurately the shearing behavior of frictional materials both qualitatively and quantitatively. A study on model parameters has been performed.  相似文献   

8.
This study investigates the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged clays, and cement through both unconfined and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analyzed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing pressure. In the triaxial compression test, it is found that the compressive strength of LWS associated with EPS is independent on the effective confining pressure. When both EPS ratio is less than 2% and cement ratio is more than 2%, the compressive strength rapidly decreases after the ultimate value. This signifies that the compressive strength-strain behavior is quite similar to that of the cemented soil. The ground improved by LWS has the compressive strength of 200 kPa associated with the optimized EPS ratio of 3–4% and initial water content of 165–175%. The ultimate compressive strength under both triaxial and unconfined compression tests is almost constant for a cement ratio of up to 2%.  相似文献   

9.
Use of Terzaghi's one-dimensional consolidation theory is not suitable for consolidation of highly deformable soft clays such as dredged soils. To model this condition, it is necessary to consider non-linear finite strain consolidation behavior, i.e., changes in compressibility and permeability with increasing stress. A one-dimensional non-linear finite strain numerical model, Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill (PSDDF), has been used to predict the stress-dependent settlement of fine-grained dredged materials. In this paper, two case studies of using PSDDF are discussed to illustrate the applicability and accuracy of PSDDF. The first case study involves PSDDF simulations of laboratory-phased placement of a marine clay dredged from Busan, Korea. PSDDF results are in good agreement with the corresponding results of the laboratory large strain consolidation tests. The other involves estimating the service life of the Craney Island Dredged Material Management Area near Norfolk, Virginia, in the United States. The excellent agreement between measured and calculated values shows that PSDDF is a reliable tool for predicting settlement of dredged material.  相似文献   

10.
Abstract

A novel approach to mitigate the environmental concerns associated with cement industry is to replace Portland cement with low carbon alternative materials such as fly ash-based geopolymer cement. Hence, reactive MgO-activated low-calcium Class F fly ash was employed in comparison to Na2SO4-activated fly ash to stabilize a lacustrine soil reused potentially in soft coastal reclamation projects and as reinforced aggregates for anti-corrosion in marine engineering. The microstructural and strength properties were investigated with series of tests including X-ray diffraction (XRD), thermogravimetry/differential thermogravimetry (TG/DTG), mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and unconfined compressive strength (UCS). The results demonstrate that the main hydration products in reactive MgO- and Na2SO4-fly ash-solidified soils are, respectively, magnesium silicate hydrate (M-S-H) gel and sodium aluminosilicate hydrate (N-A-S-H) gel. This finding is reconfirmed by the weight loss of solidified samples at 40–200?°C, which is correspondingly attributed to the dehydration of magnesium silicate hydrate (M-S-H) gel and sodium aluminosilicate hydrate (N-A-S-H) gel. The morphology and bonding ability of hydration products affects the microstructure and long-term strength of solidified soils. The microstructural change identified from SEM images coincides well with the quantitative evolution of pore structure. The pores with radius of 0.01–1?µm, i.e., micropore and mesopore, are supposed to be the dominant pores in reactive MgO- and Na2SO4-activated fly ash-solidified soils. The comparison of UCS indicates reactive MgO-activated low-Ca fly ash behaves much superior to Na2SO4-activated fly ash in enhancing the long-term compressive strength of soils. This study provides insight into the promising potential of low-Ca fly ash activated by immerging material – reactive MgO to replace cement in soil improvement.  相似文献   

11.
Quantitative laboratory studies on the structural behavior of natural intact marine clays require a large number of identical natural samples leading to an expensive and challenging task. This study proposes a simple method to reconstruct an artificial structured marine clay as the state of its natural intact clay at both macro and micro levels. For this purpose, the Shanghai marine clay is selected and mixed with low cement contents (1–6%). The clay-cement slurry is mixed in a container with the ice-covered sides at a low temperature about 0 ± 2 °C to postpone the hydration reactions until consolidation began. The purpose of adding cement is to generate the inter-particle bonding and structure in reconstituted samples. Initially, the reconstituted samples are consolidated under the in situ stress of 98 kPa and then under the pre-consolidation pressure of 50 kPa. Mechanical characteristics such as compression index, yield stress, unconfined compression strength, shear strength ratio, and the stress paths from triaxial tests are compared with natural intact clay accordingly. Scanning electron microscope and mercury intrusion porosimetry analyses are also performed to analyze the microstructure of clays for comparison. Furthermore, the proposed method is also examined by using natural intact marine clays of different locations and characteristics.  相似文献   

12.
On Physical and Mechanical Behavior of Natural Marine Intermediate Deposits   总被引:4,自引:1,他引:4  
Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the nattwal marine intermediate deposits to demonstrate the difference in behavior between natural marine clayey soils and natural marine intermediate deposits. The natural intermediate deposits have almost the same miles of natural water content to liquid limit as those of the soft natural marine clays, but the former have much higher in-situ strength and sensitivity than the latter. The research results indicate that grain size distributions of soils affect significantly tip resistance obtained in field cone penetration tests. The mechanical parameters of natural marine intermediate deposits are also significantly affected by sample disturbance due to their high sensitivity and relatively large permeability. Unconfined compression shear tests largely underestimate the strength of natural marine intermediate soils. The triaxial consohdated compression shear tests with simulated insitu confined pressure give results much better than those of uncomfined compression shear tests.  相似文献   

13.
Large amounts of sediments are dredged annually from Chinese oceans. Dredged materials (DMs) possess poor geotechnical properties and are normally treated as waste. This paper presents the first large-scale engineering application of DM solidification treatment in China. The technique has been used to treat approximately 1.8?×?106?m3 of DM from Taihu Lake to produce fill soils. Portland cement was chosen as the solidification material, the amount of which is confirmed through indoor unconfined compressive strength (UCS) tests. Special solidification machines process DM at 120?m3/hours. Field-based DM solidification engineering began in September 2006. Curing specimens were examined over 28 days. Results show that both UCS and failure strain of solidified DM could meet fill soil requirements. Bearing capacity was also assessed with a cone penetrometer test. Samples were examined after 2 years (after project completion), and the mean UCS of the specimens was 237.2?kPa, which completely satisfied the engineering request. Wuxi Taihu City Science and Technology Industrial Park has now been established on top of the solidified DM storage yard. The successful engineering of such facilities results in economic and environmental benefits; thus, engineering applications of DM solidification treatment are widely promoted in China.  相似文献   

14.
Istanbul, the largest city in Turkey and one of the major metropolitan areas in the world, cleaned one of its environmentally polluted areas—Golden Horn—by dredging 5 million m3 of the bottom sediments and pumping the resulting sludge to a storage area behind a dam built at an abandoned rock quarry site in Alibey district. The reclamation of the land that formed over the storage area of Golden Horn dredged material is socially and economically very desirable. In this paper, results from experimental studies that are focused on determining the shear strength behavior of the dredge material and undisturbed soil are presented. Slurry consolidometer test, large model tests and small model tests are used to consolidate the dredged soil samples from Halic to simulate the natural consolidation behavior of these soils. Shear strength parameters are determined by laboratory vane tests; unconfined compression tests; undrained-unconsolidated (UU) and consolidated-undrained (CU) triaxial tests on samples that are obtained through in situ undisturbed samples and laboratory model tank and slurry consolidation. Moreover, the effects of fly ash and lime additives on the undrained shear strength were determined by mixing the materials with the dredged clay from Golden Horn during the model experiments conducted in the laboratory. Based on these findings, equations are proposed that govern the relationships between undrained shear strength and water content value.  相似文献   

15.
High-organic-content dredged soils are known to have inferior mechanical characteristics because they are highly compressible and have low shear strength. To recycle dredged soil with a high organic content as a top soil this study describes an investigation of the mechanical properties and germination characteristics of stabilized organic soils using unconfined compression tests, pH tests, and seed germination tests. Several mixtures with organic contents in the range 0–30% by mass and binder contents in the range 5–15% were prepared to evaluate the effects of the organic content on the mechanical and germination characteristics of the stabilized soils. The results show that an increase in the organic content leads to a decrease in the strength and pH of the stabilized organic soil, which are favorable conditions for germination. The germination rate increased significantly with the increasing organic content, and the plant growth rate also increased. The addition of a binder into the mixtures increased the strength of the soil; however, it also increased the pH and decreased the rate of seed germination and plant growth.  相似文献   

16.
Macro-and Micro-Properties of Two Natural Marine Clays in China   总被引:2,自引:0,他引:2  
In this paper,macro- and micro- properties of natural marine clay in two different and representative regions of China are investigated in detail.In addition to in-situ tests,soil samples are collected by use of Shelby tubes for laboratory examination in Shanghai and Zhuhai respectively,two coastal cities in China.In the laboratory tests,macro-properties such as consolidation characteristics and undrained shear strength are measured.Moreover,X-ray diffraction test,scanning electron microscope test,and mercury intrusion test are carried out for the investigation of their micro-properties including clay minerals and microstructure.The study shows that:(1) both clays are Holocene series formations,classified as either normal or underconsolidated soils.The initial gradient of the stress-strain curves shows their increase with increasing consolidation pressure;however,the Shanghai and the Zhuhai clays are both structural soils with the latter shown to be more structured than the former.As a result,the Zhuhai clay shows strain softening behavior at low confining pressures,but strain hardening at high pressures.In contrast,the Shanghai clay mainly manifests strain-hardening.(2) An activity ranges from 0.75 to 1.30 for the Shanghai marine clay and from 0.5 to 0.85 for the Zhuhai marine clay.The main clay mineral is illite in the Shanghai clay and kaolinite in the Zhuhai clay.The Zhuhai clay is mainly characterized by a flocculated structure,while the typical Shanghai clay shows a dispersed structure.The porous structure of the Shanghai clay is characterized mainly by large and medium-sized pores,while the Zhuhai clay porous structure is mainly featreed by small and medium-sized pores.The differences in their macro- and micro- properties can he attributed to different sedimentation environments.  相似文献   

17.
For the purpose of efficient utilization of sediments dredged from harbor, a new method was proposed in this study. Marine silt bricks were made by mixing sediments with cement and gypsum, placing it in a cubic mold with 240 mm in length, 115 mm in width, and 53 mm in height, and curing for certain days. To investigate the effects of cement and initial water content of soil on the mechanical behavior of marine silt bricks, unconfined compressive and flexural strength tests were carried out. Given the same curing time and cement content, the higher the initial water content, the lower the compressive and flexural strength. After 60 days of curing, the compressive strength of marine silt bricks with cement content = 20% and water content = LL (liquid limit) reached approximately 5 MPa. The flexural strength was relatively low. The flexural strength of marine silt bricks with 20% cement and water content = LL was around 1.5 MPa. The compressive and flexural strength decreased with the increase of water/cement ratio. As for the curing time, longer curing time had a positive impact on the compressive strength. The ratio of flexural to compressive strength varied slightly in the range of 0.4–0.5.  相似文献   

18.
This study investigates the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged clays, and cement through both unconfined and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analyzed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing pressure. In the triaxial compression test, it is found that the compressive strength of LWS associated with EPS is independent on the effective confining pressure. When both EPS ratio is less than 2% and cement ratio is more than 2%, the compressive strength rapidly decreases after the ultimate value. This signifies that the compressive strength-strain behavior is quite similar to that of the cemented soil. The ground improved by LWS has the compressive strength of 200 kPa associated with the optimized EPS ratio of 3-4% and initial water content of 165-175%. The ultimate compressive strength under both triaxial and unconfined compression tests is almost constant for a cement ratio of up to 2%.  相似文献   

19.
When a subway train moves through a tunnel, vibrations are generated and transmitted to soils around the tunnel and adjacent structures. Subway train operation has an impact on the shield tunnel lining and the soils around tunnel, especially soft soils that are mostly marine sediments having poor engineering properties. An elastoplastic dynamic finite difference model was built by considering the hysteretic behavior of these marine soft soils and the interaction between the soils and the tunnel to study their dynamic response. Elastic and plastic constitutive models were adopted for tunnel lining and soft soils, respectively. Hysteretic damping was obtained with the Hardin–Drnevich model to reflect the hysteretic behavior of soil under the dynamic load. There are two peaks of the cumulative vertical displacement within 2?s of train moving and it reaches a dynamic balance after 2?s. The soil layers below the shield tunnel are under the compression and the soil layers above the tunnel are in the extrusion state, and turn to uplift. Maximum bending moment and shear forces of lining vary and appear at different places. A parametric study indicates that the speed of train and the interface have an impact on the dynamic behavior of soft soils.  相似文献   

20.
Chandler proposed the intrinsic strength line to correlate the undrained shear strength of samples one-dimensionally consolidated from slurry with the void index proposed by Burland. The undrained shear strength on the intrinsic strength line is different from the remolded undrained shear strength that is an important parameter for design and construction of land reclamation. The void index is used in this study for normalizing the remolded strength behavior of dredged deposits. A quantitative relationship between remolded undrained shear strength and void index is established based on extensive data of dredged deposits available from sources of literature. Furthermore, the normalized remolded undrained shear strength is compared with intrinsic strength line. The comparison result indicates that the ratio of undrained shear strength on the intrinsic strength line over remolded undrained shear strength increases with an increase in applied consolidated stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号