首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate cyclic deformation behavior of natural soft marine clay-involved principal stress rotation, a series of undrained tests were conducted by using GDS hollow cylinder apparatus. The principal stress rotates 5000 cycles while the deviator stress was kept at a constant level. The tests results show that the deformation behavior of the tested samples are significantly dependent on cyclic stress ratio (CSR). Furthermore, different type of generation of axial strains occur under different CSRs. With the same CSR, the type of axial strain is different between that considering and ignoring principal stress rotation. When CSR is larger than CSR = 0.42 under principal stress rotation, the axial strain grows rapidly after a few cycles. Compared with the results conducted by cyclic triaxial results, the effect of principal stress rotation on the axial strain is significant.  相似文献   

2.
Abstract

Under seismic loading, the soil layer is subjected to multidirectional cyclic shear stress with different amplitudes and frequencies because of the coupling of multiple shear waves and the soil element within a slope or behind a retaining wall is subjected to initial static shear stress before subjected to cyclic loading. Due to the complexity of seismic loading propagation, a phase difference exists between the initial static shear stress and cyclic shear stress. To investigate the influence of the phase difference and initial static shear stress on cyclic shear strain, cyclic modulus, and cyclic strength, a series of laboratory tests are performed on Wenzhou marine soft clay by multi-directional simple shear system, which can simulate the actual state better by controlling the horizontal cyclic stress in the x and y directions simultaneously. As the phase difference varies from 0° to 90°, the dynamic shear modulus increases and cyclic strain accumulation decreases with an increasing number of cycles. The shear strain increases with the initial shear stress.  相似文献   

3.
Abstract

In the coastal area, nearshore and offshore structures have been or will be built in marine soft clay deposits that have experienced long-term cyclic loads. Therefore, the mechanical behavior of marine clay after long-term cyclic loading needs to be investigated. In this research, a series of monotonic and cyclic triaxial tests were carried out to investigate the postcyclic mechanical behavior of the marine soft clay. The postcyclic water pore pressure, shear strength and secant stiffness are discussed by comparing the results with the standard monotonic test (without cyclic loading). It is very interesting that the postcyclic behavior of marine soft clay specimen is similar to the behavior of overconsolidated specimen, that is, the specimen shows apparent overconsolidation behavior after long-term cyclic loading. Then relationship between the overconsolidation ratio and the apparent overconsolidation ratio is established on the basis of the theory of equivalent overconsolidation. Finally, a validation formula is proposed which can predict the postcyclic undrained shear strength of marine soft clay.  相似文献   

4.
Abstract

Marine soft clay with a high salt concentration is widely distributed in coastal areas. In this study, cement-based composites consisting of cement, silica fume, plant ash and NaOH were used as a substitute for ordinary Portland cement, and the effect of salt (sodium chloride) on the strength development of clay was investigated by unconfined compressive strength (UCS) testing and scanning electron microscopy (SEM). With the addition of sodium chloride (NaCl), the amount of cementitious materials decreased, and the salt (sodium chloride) was considered to consume the cement-based composites. The consumption effect could be quantitatively evaluated by the consumption index of salt (CIS) and the clay-water/cement ratio hypothesis. The relationship between the CIS and curing period and an UCS prediction model of clay stabilized with cement-based composites with different salt contents and curing times were established. The CIS gradually decreased with increasing curing time and cement-based composites content. The accuracy of the prediction model was evaluated by a comparative analysis between the measured strengths and predicted strengths; the deviation was mostly within 10%. SEM analyses were employed to describe the changes in the microstructure of the specimens and the influencing mechanism of salt on clay stabilized with cement-based composites.  相似文献   

5.
The uplift behavior of a plate anchor in a structured clay (soft Ariake clay) is investigated through a series of laboratory tests and method of finite element analysis. The tests are adopted to identify the factors influencing the behavior of the anchor, including the thixotropic nature of Ariake clay, consolidation time, and embedment ratio of the anchor. A finite element method (FEM) is used to analyze and predict the uplift behavior of the anchor plate well in the elastic region and the yield load. The results from both the laboratory tests and the FEM analysis suggest that the embedment ratio for a deep anchor in Ariake clay is close to 4. Further increase in embedment ratio improves the capacity to a lesser extent. FEM overestimates the failure load of the uplift anchor in soft Ariake clay by about 20%. This may be ascribed to the hypothesis in the FEM analysis that there is continuous contact between the clay and the anchor until failure. Vesic’s theory for deep anchors, which may be used to predict the ultimate pullout resistance of the plate anchor in reconstituted Ariake clay, is verified to be applicable. In this paper, the plastic flow zone around the anchor is discussed using FEM which makes the behavior of anchor more understandable during the design stage.  相似文献   

6.
An angle exists between the initial static shear stress and cyclic shear stress when embankment and retaining walls are subjected to cyclic loadings. To investigate the influence of this angle on the dynamic properties of marine soft clay, tests were performed on Wenzhou soft clay. When the angle was varied from 0° to 90°, the shear strain and excess pore pressure decreased as θ increased while increased as θ increased from 120° to 180°. Shear strain developed more rapidly when θ was 120°, 150°, or 180° than that when θ was 0°, 30°, or 60°. These results indicate that the number of cycles to failure at the larger angles was greater than at the smaller angles. When θ was 90°, the strain in the x-axis direction increased as the number of cycles increased. The development of the excess pore pressure associated with specimen failure was different for different cyclic shear stress ratios and shearing angles. The effect of θ on the strain and excess pore pressure increased as the cyclic shear stress ratio increased.  相似文献   

7.
In actual engineering, soft clay foundations are in drained or partial drained conditions, it would be useful to establish reasonable constitutive relationship and provide guidance for engineering projects. A hollow cylinder apparatus is used to investigate the anisotropic deformation behavior of natural soft marine clay influenced by intermediate principal stress coefficient b and principal stress direction α. Tests were conducted by maintaining a fixed principal stress direction α relative to the vertical direction, while keeping the intermediate principal stress coefficient b constant. It was found that the anisotropic deformation behavior of natural soft clay is merely influenced by major principal stress direction α, but significantly influenced by intermediate principal stress coefficient b.  相似文献   

8.
Although extensive research has been performed on the mechanical properties of cement-stabilized clays, quite a few attempts have been made on the compression behavior of remolded cement-admixed clays. The results from oedometer tests have been discussed to investigate the compressibility of remolded cement-admixed clays, taking into consideration cement amount and curing time. The findings show that the difference in shape and position of compression curves is attributed to cement amount and curing time. Most compression index (Cc) values of remolded cement-admixed clays are greater than those of untreated clay due to the presence of remolded yield stress σ′yr that is closely related to initial water content and clay fabric. Based on the obtained test data, the relationships of Cc vs. e0, Cc vs. w0, Cc vs. e1, Cc vs. eyr, and σ′yr vs. eyr are preliminarily discussed and quantitatively established. Especially, an important divergence of void index Iv at effective stress σ′v less than remolded yield stress σ′yr can be observed at different cement amounts and curing durations. Being independent on cement amount, curing time, and initial state of soil, an excellent convergence occurs at stress σ′v greater than yield stress σ′yr. The normalized compression curves of Iv vs. σ′v at σ′v?>?σ′y can be expressed by a unique line that agrees well with intrinsic compression line (ICL) and extended ICL.  相似文献   

9.
Abstract

In this article, the degradation of the lateral bearing capacity of piles in soft clay subjected to cyclic lateral loading is studied numerically. A modified kinematic hardening constitutive model is employed to simulate the degradation of soft clay after cyclic loading. The modified model is verified by comparing the numerical simulation results with the results of centrifuge model tests. Furthermore, the modified model is applied to numerical simulations for evaluating the lateral bearing capacity of piles in soft clay subjected to cyclic lateral loading. The degradation of the lateral bearing capacity of piles in soft clay after different cyclic displacement levels and different numbers of cycles is investigated. The study reveals that the modified kinematic hardening constitutive model can effectively estimate the cyclic degradation behavior of piles in soft clay subjected to cyclic lateral loading. The degradation of the ultimate lateral bearing capacity progresses slowly with increasing cyclic displacement level for fewer cycles, and the degradation develops significantly at higher levels of cyclic displacement after applying a larger number of cycles.  相似文献   

10.
A total of 1,014 measures of sediment shear strengths were measured by means of miniature vane shear and fall cone tests on five gravity cores collected in Eckernfo‐erde Bay, Baltic Sea. Paired t test was used to compare the shear strengths measured by the two methods. It was found that fall cone strength calculated with Wood's K60value (0.29) overestimates the vane shear strength by 0.15 kPa (a = 0.001) and the sample mean of the fall cone strength is 4.1% higher than the mean of the vane shear strength. However, fall cone strength calculated with Hansbo's K60 value (0.24) underestimates the vane shear strength by 0.88 kPa (a = 0.001), and the sample mean of the fall cone strength is 13.8% less than the mean of the vane shear strength. Both calculated fall cone strengths are significantly different from the vane shear strength, with a p value of less than 0.001. Regression analysis of the Echernfoerde Bay data indicates that a new K60 value is 0.275 with a confidence interval (a = 0.01) from 0.2704 to 0.2786. Paired t test shows that there is no significant difference between miniature vane shear and fall cone tests for these samples if the fall cone strength is calculated with K60 = 0.275.  相似文献   

11.
鉴于海底浅表层软黏土强度测试精细化程度不足的现状,引入流体测试中的流变仪,对青岛海域海底浅表层软黏土开展多组原状和重塑试样的不排水剪切强度试验,通过对比静力触探和微型十字板测试结果,验证了流变仪测试方法的有效性。基于流变仪试验结果,揭示了海底软黏土原状和重塑状态下不排水剪切破坏模式,探讨了海底软黏土不排水剪切强度和灵敏度随埋深及液性指数的发展演变趋势,评价了软黏土的结构性特征。最后,引入含水率与液限之比对海底浅表层软黏土重塑不排水剪切强度进行了归一化分析,为近海海洋开发活动提供技术支撑。  相似文献   

12.
ABSTRACT

The elastic mechanical response of porous materials under a heat source has many applications in civil engineering and has received considerable attention in the geotechnical literature. In this paper, a Kelvin viscoelastic model is combined with the thermohydromechanical governing equations for marine clay and solved using a numerical inversion of the inverse Laplace transform in the time domain. After validation against existing analytical solutions, numerical parametric studies are conducted to investigate the influence of viscosity on temperature, excess pore pressure, and displacement. It is shown that viscosity has little influence on temperature, a modest influence on displacements, and a quite significant influence on excess pore pressure.  相似文献   

13.
The compressibility characteristics of Singapore marine clay in reconstituted and undisturbed states were studied using oedometer, constant rate of strain, Rowe cell, and isotropic consolidation tests. The intrinsic compression curve of the reconstituted clay was found to be similar to that proposed earlier with some minor deviations at low vertical stresses of less than 100?kPa. The field and laboratory compression behaviors were found to be similar, hence the laboratory curve could be used as a reference for interpreting the field behavior. Factors affecting the measurements of compression index and yield stress were discussed. As the coefficient of lateral earth pressure at the top upper clay was close to 1, the compression curves of vertically and horizontally trimmed samples were almost similar. The yield stress was mainly controlled by the strain rate; i.e., the higher strain rate resulted in the higher yield stress. Constrained modulus as derived from cone penetration tests and flat dilatometer tests were also examined and compared with laboratory test results. The in situ tests showed the decrease in constrained modulus with depth and generally the dilatometer test was found to register a higher modulus value.  相似文献   

14.
Settlement and Stability Analysis on Soft Clay Under Cyclic Loading   总被引:5,自引:0,他引:5  
The results of undrained cyclic triaxial tests on three types of clays are collected and a relationship among the accumulated strain, the initial stress state, cyclic stress in the soil, as well as the number of cycles is established based on the experimental data. With this relationship, a procedure is proposed for subsidence and stability analysis on soft clay under the action of cyclic loads.  相似文献   

15.
Nansha clay is an interactive marine and terrestrial deposited soft clay that is widely spread in Guangzhou, Pearl River Delta, China. To avoid excessive settlement after construction, there is a need for better quantifying the time-dependent deformation of the soft clay. This paper presents a preliminary study to predict the one-dimensional compression of Nansha clay using fractional derivatives. A fractional Merchant model was introduced to describe the time-dependent settlement, and analytical solutions were obtained in terms of the Mittag-Leffler function. The oedometer test results were presented to validate this model. Compared with classical rheological models, the fractional derivative-based model enabled close estimation of the one-dimensional compression with fewer parameters. The meaning of the order of fractional derivative and its relationship with the clay physical properties were explored. It shows that a smaller value of this order corresponded to a higher coefficient of consolidation and a lower coefficient of secondary consolidation. The amplitude of both the primary and secondary consolidation of clay may be estimated quantitatively by the order of fractional derivative. Taken together, these results may open up new avenues for theoretical and empirical modeling of rheological phenomena in clay using fractional derivatives.  相似文献   

16.
Abstract

For subway systems built in coastal areas, the marine sediments are subjected to regular load sequences of waves and intermittencies, resulting in more complex reactions in their cyclic behaviors compared with those under the uniform cyclic loading applied in common studies. This research involved a series of experimental investigations into the undrained behavior of undisturbed saturated marine sedimentary clay subjected to cyclic loading with periodic intermittency considering the initial deviator stress and the conventional uniform cyclic triaxial tests for comparison. The results indicate that periodic intermittency significantly increases cyclic resistance, manifested by weakening of the long-term response and decreases in the number of vibration times required to achieve a steady state. The effect is greater with longer intermittency durations. Furthermore, changes in the pore water volume during cyclic loading were analyzed via nondestructive detection based on nuclear magnetic resonance. A conversion from bound water to free water was observed, referring to vibration magnitude and times. Lastly, the macroscopic results observed in triaxial tests and the microscopic results obtained in the nuclear magnetic resonance test appear to be closely related, indicating that the use of the variation in pore water is an applicable approach to delineate microchanges.  相似文献   

17.
Abstract

This paper presents a novel elasto-viscoplastic constitutive formulation based on the isotache concepts and the Nishihara model. Incorporating a novel viscoelastic body to include the delay elastic deformation of marine soft clays under the external load, the proposed model is used to evaluate the theories of consolidation-creep coupling, strain rate dependency and stress relaxation of saturated marine soft clays, and hence, the methodology used to determine the parameters of the model is discussed. Ningbo marine soft clay is selected as an example to interpret the determination of the model parameters on a field scale. A series of conventional oedometer tests are conducted as well. Eventually, we utilize the model to simulate several kinds of rheological tests, including one-dimensional (1-D) long-term compression tests on Ningbo marine soft clays, 1-D constant rate of strain (CRS) tests on Batiscan clays and 1-D stress relaxation tests on Hong Kong marine deposits. These findings indicate good agreement between the computational and experimental results, suggesting the given model can provide reliable forecasts for the rheological characteristics of marine soft clays.  相似文献   

18.
Abstract

Short waste fibers are used to suppress the expansion and improve the tensile strength of cement-stabilized marine clay (CMC). The fiber-reinforced mechanism and characteristics are revealed by experimental and numerical methods. First, the curing effect of the CMC when adding a composite curing agent is observed by scanning electronic microscopy, as is the contact surface between the fiber and the matrix. Then, the expansion rate and the tensile strength of fiber-reinforced cement-stabilized marine clay (FCMC) are illustrated by an expansion experiment and a direct tensile experiment, respectively. The results show that the sample with the cement content of 0.1% and the fiber length of 10?mm is the best in terms of strength enhancement and expansion inhibition. Finally, the mechanism of fiber reinforcement is discussed following a single fiber pullout experiment and some comprehensive explanations are proposed to verify the results of the tensile experiment. A numerical simulation of a single fiber pullout from a matrix is established by using a cohesive contact model. The comparison between the numerical results and the experimental results shows that the two models can be in good agreement, indicating that the calculation model of the interaction between the fiber and the matrix is realistic.  相似文献   

19.
Abstract

The aim of this article was to study the dynamic behavior and microstructural variation of undisturbed marine clay from the South China Sea. First, dynamic cyclic triaxial tests were employed to investigate the dynamic stress–strain-pore pressure paths of the undisturbed clay. Then, scanning electron microscopy and mercury intrusion porosimetry were used to measure the variations of the micromorphology and pore size distribution between before and after the dynamic cyclic tests. Through these tests, the dynamic failure process and microstructure variation of the marine clay were quantitatively analyzed. In particular, their relationships are qualitatively established from the macro-micro perspective. Furthermore, by comparing the tests of the remolded clay with those of the undisturbed marine clay, the influence of the microstructure on the dynamic behavior is systematically investigated. The results show that the microstructural variation of the marine clay is caused by the compression deformation of the mesopores among the granular clusters into the small pores between individual particles. The study provides an effective reference for the selection of the microstructural parameters of marine clay.  相似文献   

20.
黏土中鱼雷锚抗拔承载力数值分析   总被引:1,自引:1,他引:1  
瑜璐  张金利  杨庆  杨钢 《海洋工程》2019,37(6):122-129
基于Abaqus软件,针对预埋在一定深度鱼雷锚的抗拔承载力进行3D数值分析,探讨了锚型、土体类型、拉拔荷载倾角、拉拔荷载水平分量与锚翼夹角等多种因素对拉拔承载力的影响。计算结果表明:在均质土、正常固结土和两层土体中,带4个锚翼鱼雷锚增加56.22 m2的锚翼侧面积,其拉拔承载力比无锚翼的提高1.9倍以上;当锚翼侧面积相同时,增加锚翼的宽度可以有效提高锚的承载力;拉拔荷载倾角α在30°~45°范围内,可获得较大拉拔承载力;锚翼宽度越大,拉拔荷载水平分量与锚翼间的夹角β对鱼雷锚水平承载力影响越明显;经归一化的V-H包络线公式对工程应用中预测鱼雷锚的承载力有一定参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号