首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
大气可降水量在研究大气辐射和吸收,以及全球的热量输送,尤其是暴雨的预报预测等方面都发挥着重要作用。应用2015年章丘站GPS/MET、微波辐射计和L波段探空3种设备反演的大气可降水量数据,比较了三者之间的偏差特征。结果表明:GPS/MET、微波辐射计和L波段探空3种设备反演的大气可降水量变化趋势一致,但也存在明显的系统偏差,量值从大到小分别是GPS/MET、微波辐射计、L波段探空。三者之间的偏差在春夏秋冬四季的差值都较为稳定;GPS/MET比微波辐射计偏大4.5 mm左右,不会因为季节的改变而明显地增大或减小。但标准差最大是夏季,其次是秋季,冬季最小。由于12:00 UTC水汽含量大于00:00 UTC,造成3种探测手段反演的大气可降水量在12:00 UTC的标准差几乎总是大于00:00 UTC,而相对偏差小于等于00:00 UTC。  相似文献   

2.
云南地基GPS观测大气可降水量变化特征   总被引:3,自引:1,他引:3  
利用2007年云南地基GPS站点观测资料,分析GPS反演的大气可降水量(PWV)变化特征,并用探空、实际降水量资料和GPS反演结果进行比较。结果表明:GPS/PWV能反映云南降水的季节变化特征,海拔较低的测站普遍比同期海拔较高的测站测得的GPS/PWV值高;GPS/PWV值与探空得到的大气水汽总量随时间演变趋势基本一致,其相关系数均达0.89;GPS/PWV变化周期和实际降水发生的周期基本相同,降水大多为GPS/PWV值连续增加达到峰值(或从峰值开始下降)后开始;GPS/PWV上升幅度较大或位于高位可作为连续性强降水过程出现的预报指标,但使用GPS/PWV峰值作预报指标时,还应考虑季节因素。  相似文献   

3.
利用青藏高原地区COSMIC掩星资料反演的大气湿廓线Wet Prf数据和8个站点的探空数据,分析了COSMIC反演大气廓线和可降水量与探空观测的偏差,并考查了偏差随高度的变化特征。结果显示:(1)COSMIC反演的温度、压强和水汽压廓线与探空观测具有很好的正相关;与探空观测相比,COSMIC的温度、压强和水汽压的偏差为-0.2℃、1.7 h Pa和0 h Pa,均方差为1.8℃、1.6 h Pa和0.4 h Pa;COSMIC反演大气廓线与探空观测的偏差基本上在大气低层较大,然后随高度增加而减小。(2)COSMIC反演的可降水量与探空观测正相关较好;COSMIC反演的可降水量低于探空观测,两者的偏差为-5.0 mm,均方差为5.7 mm;两者的负偏差在大气低层最明显。(3)探空观测在近地层的不稳定性和COSMIC反演方法中背景模式在青藏高原地区描述大气状态的能力有限,是造成COSMIC反演大气廓线和探空观测的偏差在近地层较大的主要原因;COSMIC观测的折射率偏小导致其反演的可降水量偏低。  相似文献   

4.
李光伟  黄彦彬  敖杰  邢峰华  毛志远 《气象》2018,44(8):1082-1093
为深入了解FY-2卫星大气可降水量(PW)的反演质量,文章选取2012和2015年地基GPS水汽观测数据,与FY-2的PW反演产品进行了对比分析。结果表明:(1)北京、武汉和海口三站GPS/PW(PW_(GPS))与FY-2/PW(PW_(FY-2))在夏季存在显著正相关,三站的相关系数都达到0.67以上,夏季PW的均方根误差值、月平均偏差绝对值均小于冬季。北京与武汉站PW平均偏差和均方根误差在四季均具有明显日变化特征;(2)当PW_(GPS)20 mm时,北京、武汉、海口和拉萨站FY-2/PW与GPS/PW比较一致,PW偏差均值的绝对值和均方根误差较小,当PW_(GPS)20 mm时,PW偏差均值绝对值和均方根误差随PW_(GPS)值减小而迅速变大。FY-2的PW产品在夏季可以为大部分区域提供高时空分辨率、高精度的大气可降水量,在大气湿度非常低、冬季和夜间条件,反演结果精度有待提高。  相似文献   

5.
李霄 《贵州气象》2008,32(1):32-33
根据贵阳探空站的资料分析大气可降水量对贵阳的影响和作用。探讨贵阳作为“避暑之都”的气候优势。  相似文献   

6.
段晓梅  曹云昌 《气象》2018,44(12):1575-1582
北斗地基增强系统是我国北斗卫星导航系统重要的地面基础设施,它可以获取高精度、高时间分辨率的水汽产品,满足数值预报、空间天气监测和预警业务的需求。本文利用2017年北斗地基增强系统中北斗单模、GPS单模和GPS+BD双模的数据资料,对同址的北斗气象站、GPS气象站和探空站反演大气可降水量进行对比分析,结果表明:(1)现行北斗地基增强系统所提供的数据,可以有效地用来反演大气柱总水汽含量,所得结果合理,平均偏差都小于1 mm,在变化上与GPS系统和探空系统基本一致,对数值预报有一定的指示作用;(2)与GPS系统相比,GPS单模/PWV和GPS+BD双模/PWV的均方差小于2 mm,相关系数均在0. 97以上,表明两者在反演PWV的精度上与GPS系统相当,而北斗单模/PWV的均方差为3~6 mm,相对方差达到了15%~20%,其精度与GPS系统还有一定的差距;(3)与探空相比,北斗单模在个别时次变化趋势上存在不一致的情况,其均方差为2. 14~6. 12 mm,相对方差为15. 32%~20. 84%,其误差可能是由于探测系统误差等因素造成的,而GPS+BD双模和GPS单模会更加稳定。  相似文献   

7.
选取大气可降水量的地基GPS水汽遥感法,探空反演法以及经验公式计算法,以贵州西部的威宁作为研究个例,对比分析3种方法在乌蒙山区对大气可降水量反演的异同。以探空反演结果作为基准值,得出地基GPS遥感水汽值和经验公式计算值较基准值偏大,3个方法的反演值之间具有很好的相关性,地基GPS遥感水汽值与探空反演值之间的相关性最好,平均绝对误差值最小,为3.5 mm,均方根误差为4.14 mm。在乌蒙山区,对流层加权平均温度(Tm)的本地经验公式与探空计算值之间的平均误差为1.1 K,本地Tm公式对大气可降水量反演的结果影响较小。有降水事件发生及昆明准静止锋常驻的11月至次年4月,GPS水汽反演精度较高,平均绝对误差仅为1 mm。5—10月,经验计算方法的计算精度较高,平均绝对误差为0.74 mm。  相似文献   

8.
黄露  范广洲 《气象科技》2018,46(6):1172-1179
利用1979—2015年ERA-Interim全球0.5°×0.5°月平均再分析资料,计算了青藏高原水汽收支方程中的水汽局地变化项、辐散项、平流项和垂直项的相对贡献,并分析了各项的变化特征。结果表明:(1)在整层和近地层,水汽辐合辐散项占大气可降水量变化项的比例最高;在中层和高层,水汽平流项占大气可降水量变化项的比例最高。水汽辐合辐散与大气可降水量有更好的相关性。(2)水汽辐合辐散的空间分布整体为低层辐合高层辐散;在整层和近地层,高原东部为湿平流,其余大部分区域为干平流,在中层湿平流区域面积扩大,高层几乎都为干平流。(3)水汽辐合辐散年际变化表现为增加趋势,其中整层、近地层和中层增加趋势最明显;水汽平流年际变化表现为各层都呈下降趋势,其中中层和高层下降趋势最明显。  相似文献   

9.
利用Microsoft Visual Basic 6.0编制了MICAPS格式探空数据反演大气可降水量程序,通过对2010—2012年青海省大气可降水量数据的分析,得出青海省大气可降水量变化具有以下特征:大气可降水量月变化特征呈单峰分布,7、8月份位于峰值区域,7月末开始大气可降水量为减小趋势,1、2、12月份大气可降水量处于低值区;青海省大气可降水量季变化特征呈单峰分布,最大大气可降水量值出现在夏季,最小值出现在冬季;青海省大气可降水量呈由西南向东北逐渐增大的空间分布特征;海拔高度与大气可降水量呈反相关关系,相关系数为-0.8399;大气可降水量与降水量总体变化趋势相同,但大气可降水量不是降水形成的决定因素。  相似文献   

10.
胡姮  曹云昌  梁宏 《气象》2019,45(4):511-521
为了探讨探空观测的水汽可降水量资料的可靠性,本文以GNSS/MET遥感的大气可降水量为参照标准,对广东汕头站2013年以及西藏那曲站2016年6月至2017年5月的两种可降水量观测结果进行对比分析和偏差订正。经过研究分析表明:两个站探空可降水量相比地基GNSS可降水量偏干,偏差分别为7. 4%和9. 8%。探空可降水量的偏差显示具有季节变化和日变化的特征,其中夏季偏差较明显,00时比12时明显。太阳辐射加热引起的地面气温的日变化和季节变化是造成偏差的重要原因。本文根据太阳辐射偏差订正经验公式,对两个站的探空可降水量进行偏差订正,订正后偏差明显减少。  相似文献   

11.
青藏高原大气水汽探测误差及其成因   总被引:3,自引:1,他引:2  
梁宏  张人禾  刘晶淼 《气象学报》2012,70(1):155-164
青藏高原大气水汽分布对区域天气气候有很大影响,其探测资料的可靠性备受关注。以地基全球定位系统(GPS)遥感的大气可降水量为对比参照,分析了1999—2008年拉萨和2003年那曲探空观测大气可降水量的误差及其原因。结果表明,近10年拉萨站探空观测的可降水量比GPS遥感的可降水量明显偏小,偏小程度随使用不同的探空仪而异。GZZ-2型机械探空仪和GTS-1型电子探空仪多年平均的大气可降水量相对偏差分别为8.8%和4.4%,随机误差分别为19.8%和13.3%。近10年大气可降水量探测偏差具有减少的趋势,从12.7%减少至2.4%,主要是由探空仪性能改进所致。分析发现青藏高原大气可降水量探测偏差具有明显的日变化,12时(世界时)比00时大。拉萨站GZZ-2型和GTS-1型探空仪在12时多年平均的大气可降水量探测偏差分别为15.8%和8.3%,00时分别为1.6%和0.5%。那曲站GZZ-2型探空仪在12和00时的大气可降水量探测偏差分别为12.4%和0.3%。大气可降水量探测偏差还具有季节变化,夏季大,冬季小。对大气可降水量探测偏差日变化和季节变化的成因分析表明,12时气温比00时气温高以及夏季比冬季气温高是造成大气可降水量探测偏差日变化和季节变化的重要原因。  相似文献   

12.
基于地基GPS遥感的大连地区大气水汽总量变化特征   总被引:1,自引:0,他引:1  
基于大连地区地基GPS综合观测网遥感反演了大气水汽总量(PWV),分析了大连地区PWV空间变化、逐月变化和日变化特征以及PWV变化与降水的关系,并利用大连本站2005-2011年的探空资料拟合了大连地区地面温度和大气加权平均温度的关系。结果表明:大连本站的PWV与探空积分的水汽含量相关系数达到0.988,均方根误差为2.5 mm。大连地区PWV南北分布比较均匀;PWV最大的月份为7-8月,最大月平均值约40 mm,PWV最小的月份为1月,最小月平均值小于4 mm;大连地区PWV春季和冬季日变化幅度约0.5 mm,夏季和秋季日变化幅度约1.3 mm。夏季和秋季的PWV日变化呈单峰型,春季和冬季的PWV日变化呈多峰型; 在降水发生前8 h 大气水汽总量有明显增加过程,对降水的发生有指示作用。  相似文献   

13.
利用欧洲中心(European Center for Medium-Range Weather Forecasts,ECMWF) ERA-interim再分析资料、常规气象观测资料及GPS (Global Position System)系统探测的大气可降水量(Precipitable Water Vapor,PWV)资料,对2017—2018年辽宁地区三次中雪及以上量级的降雪过程中大气可降水量的演变特征进行分析。结果表明:三次降雪过程中PWV均呈现单峰式结构,其与小时降雪量之间存在较好的时间对应关系,降雪时段对应PWV高值阶段;在降雪出现前6—15 h,PWV迅速增加,且PWV总增长量与降雪强度存在较好的正相关关系。  相似文献   

14.
华北三站地基GPS反演的大气可降水量及其特征   总被引:1,自引:7,他引:1  
利用2005年4月-2006年10月石家庄、秦皇岛和张家口三个地基GPS站的观测资料和地面气象资料,根据GPS反演可降水量的原理以及可降水量与地面水汽压的线性对应关系,对不同站点、不同时次的大气可降水量进行了解算和补算,并对河北省GPS可降水量的时空分布特征进行了分析.结果表明:可降水量在时间上先升后降,7、8月达到最大值;在空间上由北向南递增;可降水量的日变化特征不十分显著,仅表现为小幅度波动.  相似文献   

15.
成都地区秋、冬季GPS可降水量的时空分析   总被引:2,自引:4,他引:2  
利用成都地区5个测站地基GPS2007年9月-2008年2月的观测数据,解算出1 min间隔的天顶总延迟,结合自动气象站资料计算出30 min间隔的大气可降水量(GPS-PWV).对月平均的GPS-PWV分析表明:秋、冬季变化趋势从9月开始下降,1月达到最小值,2月又逐渐上升.在大气环流相同的情况下,地理位置相近的站,海拔高的地区大气中的水汽量比海拔低的地区要少,且变化较大;海拔高度相近的站,大气中的水汽含量由南向北减少.日合成分析显示:在静稳天气下,日变化特征显著,具有双峰型特征:白天峰值与气温的最大值相对应;夜间峰值与降水量的峰值相对应;GPS-PWV与地面空气相对湿度白天呈负相关,夜间呈正相关.  相似文献   

16.
MODIS大气可降水量(PWV)空间分辨率高但易受云雨等环境因素影响,精度不高.GNSS PWV 空间分辨率较低但具有全天候、不受天气影响、精度高的优点.研究表明两者存在显著的线性相关性,结合两者的优点,基于GNSS PWV校正MODIS PWV可获取大面积高精度的PWV.针对传统的线性回归校正模型没有考虑云、气溶胶等的影响使两种数据线性相关性变差的问题,本文在传统的线性校正模型上增加了使用年积日的非线性周期项的方法来构建校正模型.利用2017—2019年香港地区GNSS对流层延迟与MODIS近红外数据,使用频谱分析线性残差项,结果表明残差具有显著的年周期.对比传统模型,本文模型的平均绝对误差、平均相对误差、均方根误差和拟合度都有明显的改善,表明本文模型可行有效且精度较高.  相似文献   

17.
由于桂林地区地基GNSS站并未配置气象传感器,致使大量GNSS观测数据无法在大气水汽(PWV)监测中发挥作用.针对这一情况,本文将欧洲中期天气预报中心(ECMWF)最新发布的ERA5再分析资料中测站处的气压和温度气象数据加入到GNSS水汽反演中,并将反演结果与利用地面气象站反演的GNSS水汽做对比,以此评估ERA5在桂林地区反演GNSS水汽的精度和适用性.结果表明:1)以桂林地区2017年10个地面气象站的实测气压和温度数据为参考值,ERA5地表气压和温度的年均偏差分别为-0.35 hPa和0.86 K,年均均方根误差(RMSE)分别为0.65 hPa和1.66 K,该精度可用于GNSS水汽反演;2)以2017年6—7月GNSS利用地面气象站反演的PWV为参考值,ERA5反演的GNSS PWV的偏差和RMSE分别为0.17 mm和0.35 mm,且两者具较好的相关性和一致性.由此表明,ERA5地表温压产品可应用于桂林地区GNSS水汽反演,这些研究结果可为桂林地区的GNSS水汽反演及数据源的选用提供重要的参考依据.  相似文献   

18.
利用Aura卫星微波临边观测仪(Microwave Limb Sounder,MLS)数据,评估了ERA-I、MERRA、JRA-55、CFSR和NCEP2等5套再分析资料的水汽数据在青藏高原及周边上对流层-下平流层(Upper Troposphere and Lower Stratosphere,UTLS)的质量,然后选取其中质量较好的两套水汽数据,分析它们对青藏高原及周边UTLS水汽的时空分布和演变的表征能力。结果表明,与MLS数据相比,5套再分析资料中在UTLS普遍偏湿,最大偏湿在上对流层215 hPa,约为165%,而在下平流层,ERA-I和MERRA与MLS的差异相对较小。总的来看,ERA-I和MERRA表征的水汽与MLS更为接近。进一步的对比表明,ERA-I和MERRA中青藏高原及周边水汽含量的时空分布与MLS较为接近,夏季能够表征青藏高原在纬向和经向上的水汽高值区,冬季能够表征对流层顶、西风急流中心附近的水汽梯度带,而且MERRA的结果要好于ERA-I。ERA-I、MERRA和MLS中青藏高原地区的水汽季节演变都表现为冬季1-2月水汽含量低,夏季7-8月水汽含量高,水汽的季节变化在200~300 hPa最大。MLS资料显示,在青藏高原地区对流层顶附近,存在随时间向上向极的水汽传输信号。相较而言,ERA-I对向上水汽传输信号的表征更好,而MERRA对下平流层(100 hPa)向极水汽传输信号的表征更好。  相似文献   

19.
GPS遥感大气可降水量在降水天气过程分析中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
应用GPS探测的大气可降水量(PWV)对2010年大连地区降水过程中水汽变化特征进行了分析。结果表明:GPS/PWV资料能反映大气中水汽的时间和空间变化,其变化特征与降水有较好的对应关系;不同性质的降水过程PWV变化特征明显不同,稳定性降水过程中PWV变化较为平缓,呈明显的单峰结构,对流性降水过程水汽变化程度剧烈,呈震荡趋势,而混合型降水具有两种性质降水的共同特征;降水过程中GPS/PWV阈值表明,GPS/PWV资料在降水天气预报方面有一定的应用价值。  相似文献   

20.
利用大连市气象局地基GPS/MET观测网大气可降水量(PWV)数据,分析2011年大连瓦房店、庄河和长海地区降水天气过程PWV的变化特征及其与降水量和降水强度的关系,在此基础上通过分析物理量场和天气系统,探讨大尺度水汽输送、辐合与PWV变化的关系及GPS在暴雨天气中的应用。结果表明:PWV的增长方式受当地天气系统的支配和制约,对一次明显的降水过程,从开始至结束PWV的变化与降水量有明显的相关性。当有水汽由南向北输送时,PWV在降水开始前逐渐增长,当地面及高空有大范围的水汽辐合且高空比湿值大于10 g·kg-1时,PWV显著增长(降水开始前4-5 h),主要降水时段与PWV峰值相对应,同时PWV的增幅大小与降水强度有明显的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号