首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we describe a 3D control-volume finite-element method to solve numerically the coupled partial differential equations (PDEs) governing geological processes involved in the evolution of sedimentary basins. These processes include sediment deposition and deformation, hydrocarbon generation, multiphase fluid flow, and heat transfer in deforming porous media.  相似文献   

2.
《Applied Ocean Research》2005,27(4-5):216-223
A modified scaled boundary finite-element method (SBFEM) for problems with parallel side-faces is presented in this study. To overcome the inherent difficulty of the original SBFEM for domains with parallel side-faces, a new type of local co-ordinate system is proposed. The new local co-ordinate system allows the so-called scaling centre of the SBFEM to move freely along an arbitrary curve and thus eliminates the non-parallel side-face restriction in the original SBFEM. The modified SBFEM equations are derived based on a weighted residual approach. It is found that the modified SBFEM solution retains the analytical feature in the direction parallel to the side-faces and satisfies the boundary conditions at infinity exactly, as in the original SBFEM. This paper develops a complete scaled boundary finite-element solution to a two-dimensional Laplace's equation with Neumann and Robin boundary conditions in a semi-infinite domain with parallel boundaries.  相似文献   

3.
《Ocean Modelling》2010,34(3-4):235-256
In this article we propose and implement a multilevel method to simulate the solution of the two-dimensional nonlinear shallow-water equations. The multilevel method is based on a central-upwind finite volume scheme and uses new incremental unknowns which enable to preserve the numerical conservation of the scheme. The method is tested and analyzed on two and three levels of discretization on different test cases and turns out to furnish a good solution of the problems while saving CPU time.  相似文献   

4.
A numerical method is proposed for solving the two layer shallow water equations with variable bathymetry in one dimension based on high-resolution f-wave-propagation finite volume methods. The method splits the jump in the fluxes and source terms into waves propagating away from each grid cell interface. It addresses the required determination of the system’s eigenstructure and a scheme for evaluating the flux and source terms. It also handles dry states in the system where the bottom layer depth becomes zero, utilizing existing methods for the single layer solution and handling single layer dry states that can exist independently. Sample results are shown illustrating the method and its handling of dry states including an idealized ocean setting.  相似文献   

5.
李燕初  蔡文理 《台湾海峡》1990,9(4):347-352
本文给出三角形单元集中质量有限元解浅水波方程的方法以及该方法在IBM-PC微机上的应用实例并取得较好结果。  相似文献   

6.
《Applied Ocean Research》2005,27(4-5):224-234
The modified scaled boundary finite-element method (SBFEM), keeping the advantages of the original SBFEM, eliminates the restriction of the scaling center location so that this approach can solve two-dimensional problems with parallel side-faces. In this paper, the modified SBFEM is applied to solutions of two types of problems—wave diffraction by a single and twin surface rectangular obstacles and wave radiation induced by an oscillating mono-hull and twin-hull structures in a finite depth of water. For wave diffraction problems, numerical results agree extremely well with the analytic solution for the single obstacle case and other numerical results of a different approach for the twin obstacle case. For wave radiation problems, the particular solutions to the scaled boundary finite-element equation are presented for cases of heave, sway and roll motions. The added mass and damping coefficients for heave, sway and roll motions of a two-dimensional rectangular container are computed and the numerical results are compared with those from independent analytical solution and numerical solution using the boundary element method (BEM). It is found that the SBFEM method achieves equivalent accuracy to the conventional BEM with only a few degrees of freedom. In the last example, wave radiation by a two-dimensional twin-hull structure is analyzed. Comparisons of the results with those obtained using conventional Green's function method (GFM) demonstrate that the method presented in this paper is free from the irregular frequency problems.  相似文献   

7.
《Ocean Modelling》2003,5(1):37-63
A stabilized finite-element (FE) algorithm for the solution of oceanic large scale circulation equations and optimization of the solutions is presented. Pseudo-residual-free bubble function (RFBF) stabilization technique is utilized to enforce robustness of the numerics and override limitations imposed by the Babuška–Brezzi condition on the choice of functional spaces. The numerical scheme is formulated on an unstructured tetrahedral 3d grid in velocity–pressure variables defined as piecewise linear continuous functions. The model is equipped with a standard variational data assimilation scheme, capable to perform optimization of the solutions with respect to open lateral boundary conditions and external forcing imposed at the ocean surface. We demonstrate the model performance in applications to idealized and realistic basin-scale flows. Using the adjoint method, the code is tested against a synthetic climatological data set for the South Atlantic ocean which includes hydrology, fluxes at the ocean surface and satellite altimetry. The optimized solution proves to be consistent with all these data sets, fitting them within the error bars.The presented diagnostic tool retains the advantages of existing FE ocean circulation models and in addition (1) improves resolution of the bottom boundary layer due to employment of the 3d tetrahedral elements; (2) enforces numerical robustness through utilization of the RFBF stabilization, and (3) provides an opportunity to optimize the solutions by means of 3d variational data assimilation. Numerical efficiency of the code makes this a desirable tool for dynamically constrained analyses of large datasets.  相似文献   

8.
《Coastal Engineering》2004,51(1):81-89
A simple and innovative method to solve explicitly the dispersion equation for water waves over dissipative media is presented. The roots of this equation are themselves complex and difficult to obtain by standard numerical methods. A general structure for the dispersion relation is given, the dimensionless wave number, x, depending on the value of a dissipation parameter, φ, which is a function of the dissipative medium. Based on the hypothesis that a small perturbation in the dissipation parameter, δφ, produces a small variation in the dimensionless wave number, δx, a simple approach is proposed to calculate explicitly in an iterative manner the complex roots. The new method improves upon the unreliability of standard numerical schemes in the calculation of the roots in dissipative media.  相似文献   

9.
《Ocean Modelling》2004,6(2):125-150
We describe a three-dimensional (3D) finite-element ocean model designed for investigating the large-scale ocean circulation on time scales from years to decades. The model solves the primitive equations in the dynamical part and the advection–diffusion equations for temperature and salinity in the thermodynamical part. The time-stepping is implicit. The 3D mesh is composed of tetrahedra and has a variable resolution. It is based on an unstructured 2D surface mesh and is stratified in the vertical direction. The model uses linear functions for horizontal velocity and tracers on tetrahedra, and for surface elevation on surface triangles. The vertical velocity field is elementwise constant. An important ingredient of the model is the Galerkin least-squares stabilization used to minimize effects of unresolved boundary layers and make the matrices to be inverted in time-stepping better conditioned. The model performance was tested in a 16-year simulation of the North Atlantic using a mesh covering the area between 7° and 80° N and providing variable horizontal resolution from 0.3° to 1.5°.  相似文献   

10.
Unstructured-grid models grounded on semi-implicit, finite-volume, Eulerian–Lagrangian algorithms, such as UnTRIM and ELCIRC, have enjoyed considerable success recently in simulating 3D estuarine and coastal circulation. However, opportunities for improving the accuracy of this type of models were identified during extensive simulations of a tightly coupled estuary–plume–shelf system in the Columbia River system. Efforts to improve numerical accuracy resulted in SELFE, a new finite-element model for cross-scale ocean modeling. SELFE retains key benefits, including computational efficiency of existing semi-implicit Eulerian–Lagrangian finite-volume models, but relaxes restrictions on grids, uses higher-order shape functions for elevation, and enables superior flexibility in representing the bathymetry. Better representation of the bathymetry is enabled by a novel, “localized” vertical grid that resembles unstructured grids. At a particular horizontal location, SELFE uses either S coordinates or SZ coordinates, but the equations are consistently solved in Z space. SELFE also performs well relative to volume conservation and spurious oscillations, two problems that plague some finite-element models. This paper introduces SELFE as an open-source code available for community use and enhancement. The main focus here is on describing the formulation of the model and on showing results for a range of progressively demanding benchmark tests. While leaving details to separate publications, we also briefly illustrate the superior performance of SELFE over ELCIRC in a field application to the Columbia River estuary and plume.  相似文献   

11.
C.Z. Wang  G.X. Wu 《Ocean Engineering》2008,35(8-9):717-726
A time-domain method is employed to analyse the resonant oscillations of the liquid confined within the two floating bodies. The velocity potentials at each time step are obtained through a finite-element method (FEM) with quadratic shape functions. The matrix equation of the FEM is solved through an iteration. The radiation condition is satisfied through a combination of the damping zone method and the Sommerfeld–Orlanski equation. A detailed analysis is made for two rectangular floating cylinders undergoing forced oscillation. The first-order potential reveals the resonant behaviour of the wave motion at certain frequencies ωi, which is similar to sloshing in a tank. More interestingly, the second-order theory further reveals that when the oscillation frequency is at ωi/2 or half of the resonant frequency, no first-order resonance is observed as expected, but the second-order resonant motion becomes evident, which does not seem to have been extensively investigated so far. Detailed results for two rectangular cylinders are provided to show some insights into the resonant effect due to the interaction between the bodies. The first- and second-order resonant phenomena have been observed and the result has shown that the second-order components have significant influence on the wave and force in some cases, especially at the second-order resonance.  相似文献   

12.
We report on the development and validation of a coupled two- and one-dimensional finite-element model for the Scheldt tributaries, river, estuary and region of fresh water influence (ROFI). The hydrodynamic equations are solved on a single, unstructured, multi-scale mesh stretching from the shelf break to the Scheldt tributaries. The tide is forced on the shelf break and propagates upstream in the riverine network. Upstream boundaries lie on sluices or outside of the region of tidal dominance where daily averaged discharges are imposed. Two-dimensional, depth-averaged shallow water equations are solved by means of the discontinuous Galerkin (DG) method over the marine and estuarine parts of the computational domain. In the rivers, however, one-dimensional equations are dealt with using the DG method with the addition of a technique to cope with confluence points. Model parameters are carefully calibrated, leading to the simulation of wind- and tide-forced flows that are in excellent agreement with available data. The diffusivity in the transport equation is calibrated using time series of salinity at various locations in the estuary. Finally, the Lagrangian residual transport in the estuary and the adjacent coastal zone is investigated. This work is a major step towards an integrated model for studying the dynamics of waterborne contaminants and the water renewal timescales in the Scheldt land-sea continuum.  相似文献   

13.
In this paper, the generalised two-dimensional differential transform method (DTM) of solving the time-fractional coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the generalised two-dimensional DTM is effective for the coupled equations.  相似文献   

14.
A numerical scheme for solving the class of extended Boussinesq equations is presented. Unlike previous schemes, where the governing equations are integrated through time using a fourth-order method, a second-order Godunov-type scheme is used thus saving storage and computational resources. The spatial derivatives are discretised using a combination of finite-volume and finite-difference methods. A fourth-order MUSCL reconstruction technique is used to compute the values at the cell interfaces for use in the local Riemann problems, whilst the bed source and dispersion terms are discretised using centred finite-differences of up to fourth-order accuracy. Numerical results show that the class of extended Boussinesq equations can be accurately solved without the need for a fourth-order time discretisation, thus improving the computational speed of Boussinesq-type numerical models. The numerical scheme has been applied to model a number of standard test cases for the extended Boussinesq equations and comparisons made to physical wave flume experiments.  相似文献   

15.
《Coastal Engineering》1999,37(2):97-122
In this paper, a numerical model based on the improved Boussinesq equations derived by Beji and Nadaoka [Beji, S., Nadaoka, K., 1996. A formal derivation and numerical modeling of the improved Boussinesq equations for varying depth. Ocean Eng. 23 (8), 691–704] is presented. The finite element method is used to discretize the spatial derivatives. Quadrilateral elements with linear interpolating functions are employed for the two horizontal velocity components and the water surface elevation. The time integration is performed using the Adams–Bashforth–Moulton predictor–corrector method. Five test cases for which either theoretical solutions or laboratory results are available are employed to test the proposed scheme. The model is capable of giving satisfactory predictions in all cases.  相似文献   

16.
Boussinesq型方程是研究水波传播与演化问题的重要工具之一,本文就1967-2018年常用的Boussinesq型水波方程从理论推导和数值应用两个方面进行了回顾,以期推动该类方程在海岸(海洋)工程波浪水动力方向的深入研究和应用。此类方程推导主要从欧拉方程或Laplace方程出发。在一定的非线性和缓坡假设等条件下,国内外学者建立了多个Boussinesq型水波方程,并以Stokes波的相关理论为依据,考察了这些方程在相速度、群速度、线性变浅梯度、二阶非线性、三阶非线性、波幅离散、速度沿水深分布以及和(差)频等多方面性能的精度。将Boussinesq型水波方程分为水平二维和三维两大类,并对主要Boussinesq型水波方程的特性进行了评述。进而又对适合渗透地形和存在流体分层情况下的Boussinesq型水波方程进行了简述与评论。最后对这些方程的应用进行了总结与分析。  相似文献   

17.
李彦敏  梅凤翔 《海洋学报》2010,32(9):5930-5933
场方法和最终乘子法是求解运动微分方程的基本方法. 本文将这两种方法应用于广义Birkhoff系统,求出了场方法的基本偏微分方程和该方程的完全积分; 根据Jacobi最终乘子定理求出了广义Birkhoff方程的解. 并举例说明结果的应用.  相似文献   

18.
A formal derivation of the improved Boussinesq equations of Madsen and Sørens (1992) is presented to provide the correct forms of the depth-gradient related terms. Linear shoaling characteristics of the new equations are investigated by the method of Madsen and Sørensen (1992) and by the energy flux concept separately and found to agree perfectly, whereas these approaches give conflicting results for the equations derived by Madsen and Sørensen (1992). Furthermore, Nwogu's (1993) modified Boussinesq model is found to produce a linear shoaling-gradient identical with the present work. Numerical modelling of the derived equations for directional waves is carried out by three-time-level finite-difference approximations. A higher-order radiation condition is implemented for effective absorption of the outgoing waves. Several test cases are included to demonstrate the performance of the model.  相似文献   

19.
建立了求解一维全非线性Green-Naghdi水波方程的中心有限体积/有限差分混合数值格式。采用结构化网格对守恒形式的控制方程进行离散和积分,界面数值通量采用有限体积法计算,剩余项则采用中心有限差分格式求解。其中,采用中心迎风有限体积格式计算控制体界面数值通量,并结合界面变量的线性重构方法,使其在空间上具有四阶精度,通过引入静压重构技术和波浪破碎指标使模型具备处理海岸水-陆动边界及波浪破碎的能力。时间积分则采用具有总时间变差减小(Total Variation Diminishing,TVD)性质的三阶龙格-库塔法进行。应用该模型对孤立波在常水深和斜坡海岸上的传播过程及规则波跨越潜堤传播的实验进行了数值模型研究,数值计算同解析解及实验数据吻合良好。  相似文献   

20.
Three kinds of methods, i. e., explicit, semi-implicit, and semi-implicit and semi-Lagrangian method, are tested in the time-integration of shallow-water equations on rotating sphere. Helpful results are available from experiments, especially about the accuracy and efficiency of different semi-implicit and semi-Lagrangian schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号