首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Northeasters are storms that affect the Chesapeake Bay area more frequently, last for longer periods and impact larger areas than hurricanes. Their impacts on storm surge development and the water exchange between estuary and subestuaries (tributaries) in the Bay vary from one event to another. In this study, three different northeaster events were selected based on their tracks when passing through the Chesapeake Bay area. An unstructured grid finite volume model ELCIRC was utilized to examine the response of the water level of the Chesapeake Bay to three selected northeasters, and the barotropic subtidal water exchanges between the tributaries and the estuary in the Bay. Model sensitivity tests were conducted to examine various effects induced by, for example, tide–surge interaction, open boundary condition, river inflow, wetting-and-drying of the low-lying land area and the usage of 2-D or 3-D mode. The results show that excluding tide–surge interaction did not deteriorate the model performance in the lower Bay but it increased the model inaccuracy in the upper Bay and in the tributaries; using radiation boundary condition decreased the sea level variation in the Bay without appropriately specifying incoming wave; excluding wetting-and-drying of low-lying land area reduced the volume flux by approximately 5%; and using 3-D mode generally increased the water level variation in the Bay. The model predicted storm surges well for three northeaster events. Further diagnostic experiments show that the relative importance of the local and remote winds in generating storm surges in the Bay varied with different northeasters. The inverse barometeric effect played an important role in inducing storm surges for two selected northeasters. The interaction between the tributaries and the Bay proper is considerable. The impacts of the remote wind and Bay wind can be much larger than that of the tributary wind and, thus, control the hydrodynamics and mass transport in the tributaries. The Bay wind and tributary wind effects are largely affected by the wind direction and wind phase, and geographic locations of the tributaries in the Bay. The tributary wind can be dominant over the remote wind and Bay wind effects when the local wind stress and barometric pressure changes are large.  相似文献   

2.
Wave set-up in storm surges is studied using a numerical model for coasts in Tosa Bay, Japan, open to the Pacific Ocean. Simulation models employing only atmospheric pressures and winds as external forces are unable to properly simulate open coast storm surge heights, such as those due to Typhoon Anita (1970). However, the present study shows that a numerical model incorporating wave-induced radiation stresses, as well as wind stresses and pressure gradients, is able to account for the open coast surge heights. There is a maximum contribution of 40% by the radiation stresses to the peak sea level rises. This study also evaluates the effects of the tides; including the tides improves the agreement between the predicted water surface elevations and the observations. The difference in predictions between one-way coupling from wave to surge models and two-way coupling of the surge and wave models is found to be small.  相似文献   

3.
作为半封闭狭长海湾,铁山湾受风暴潮灾害的影响较为严重。根据多年观测资料和数值模型对铁山湾内的风暴潮水位特征进行了研究。观测资料表明海湾内风暴潮峰值水位受天文潮相位影响较为显著,然后基于ADCIRC风暴潮模型和1409号“威马逊”台风参数,定量评估了天文潮对风暴潮水位的影响。模拟结果表明当考虑天文潮作用时,会显著提高模拟结果精度,然后通过数值实验研究了风暴潮与不同相位天文潮相互作用时的水位变化特征。数值实验结果表明天文潮-风暴潮相互作用引起的非线性水位在涨潮阶段不明显,在高潮位时非线性水位达到负值最大;在落潮时达到正值最大。风暴潮增水峰值由于受到这种非线性效应的影响,在高潮位时数值最小。海湾内非线性作用要远大于外部,非线性效应越强,总水位峰值相对于天文潮高潮位的延迟时间也就越长。  相似文献   

4.
基于Delft3D模型建立了中国渤、黄海风暴潮数值模型,选取1979—2020年影响该海域的93场风暴过程(包括台风、寒潮和温带气旋),模拟了所产生的风暴增水和风暴潮总水位。采用泊松—皮尔逊复合极值分布理论,推算了渤、黄海对应不同重现期的极值水位;通过数值试验,对天文潮—风暴潮非线性相互作用对极值水位的贡献进行了量化分析。研究结果表明,渤海的莱州湾、渤海湾,以及黄海的江华湾、西朝鲜湾风暴增水最大,其中江华湾北侧和渤海湾西南侧的百年一遇风暴增水可达4 m;天文潮—风暴潮非线性相互作用在潮差较大、水深较浅的河口、湾顶区域更为显著,与耦合模型结果相比,非线性作用使极值水位值偏小,天文潮、风暴潮增水的线性叠加可显著高估极值水位,高估的幅值可达0.5~0.8 m。考虑重现期极值水位是海岸灾害防护工程的关键设计参数之一,对海岸构筑物的安全和建造成本影响极大,应重视天文潮—风暴潮非线性相互作用对重现期水位的影响。  相似文献   

5.
In recent years,fast economic development demands for more land use and thus many reclamation projects are initiated around the Sanmen Bay,Zhejiang,SE China in the East China Sea,for which tidal and storm surge levels are reassessed.A two-dimensional numerical model based on an advanced circulation model(ADCIRC)was applied to evaluate the impact of reclamation projects on tidal and storm surge levels in the bay.The results show that the shoreline relocation and topographic change had opposite effects on tidal heights.Shoreline relocation decreased the tidal amplitude,while siltation caused topographic change and increased the amplitude.Such variations of the amplitude were significant in the top areas of Sanmen Bay.Three types of typhoon paths were selected for a case study to investigate the impacts of shoreline relocation and topographic change on storm surge level.Results show that the maximum increase in storm surge level due to shoreline relocation was less than 0.06 m.The rise of peak surge level due to the change of topography was significant and the peak surge level rose when siltation increased.The maximum surge level rise occurred in the path of northwest landing typhoons,which exceeded 0.24 m at the top of the bay.The rise in peak surge level can potentially lead to severe damages and losses in Sanmen Bay and more attention needs to be paid to this problem of shoreline change in the future.  相似文献   

6.
全球变暖引发的海平面上升将加剧风暴潮增水,进而危及沿海经济发展与社会安全保障。本文基于模型耦合与模型嵌套技术构建北部湾台风风暴潮数值模拟系统,以2012年台风"山神"为天气背景,通过设计7组情景模拟研究未来不同海平面上升背景下北部湾风暴潮增水变化。结果表明:风暴潮期间水位从南向北沿北部湾逐渐涌高,最高水位发生在广西沿岸,达2.4 m以上。天文潮和台风风场拖曳力是形成高水位的主要驱动力,其中天文大潮和最大风场拖曳力对最高水位的贡献率分别约占70%和30%。海平面上升对风暴潮增水的影响具有时空非线性和非均一性特征。其中,潮位波动和波-流耦合效应会改变实际最大增水发生时间,导致钦州湾附近高潮位大致提前1天半,海平面上升1.1 m使得最大风暴潮增水大致提前30 min;未来海平面上升0.66~1.1 m将导致北部湾大部分海域风暴潮增水幅度放大6%~10%,广西沿岸钦州湾和大风江河口出现负增加效应,可能与溺谷海湾地形特征有关。研究结果可为未来北部湾沿岸防御风暴潮灾害提供理论依据。  相似文献   

7.
The Hangzhou Bay faces frequent threats from typhoon-induced storm surge and has attracted considerable attentions of coastal researchers and environmental workers. A three-dimensional storm surge model system based on Finite-Volume Coastal Ocean Model (FVCOM) and analytical cyclone model is applied to investigate the hydrodynamic response in the Hangzhou Bay to tropical typhoon. This model has been used to reproduce the storm surge generated by Typhoon Agnes (No. 8114) and the simulated wind field and water elevations have been compared with the available field observations. A series of numerical experimental cases have been conducted to study the effects of land reclamation project (shoreline relocation and seabed deformation) and cyclonic parameters (minimal central pressure (MCP), radius to maximal wind (RMW) and translation speed (TS)) on the hydrodynamics in the Hangzhou Bay. The results show that the shoreline relocation and seabed deformation could generate much higher storm surge in the vicinity of reclamation project with the shoreline relocation making main contribution (about 70%) to this increase. It is found that among the cyclonic parameters, RMW is the most important factor affecting the peak surge in the Hangzhou Bay.  相似文献   

8.
—In China,estuarine and coastal cities are mostly regional economic development centers.Thedisasters by combined effect of upper reach flood,storm surge and typhoon waves are primary obstaclesto the economic development of such cities.Thus the risk analysis and system analysis of flood-stormsurge-wave disaster,economic loss and flood-storm surge control measures play a very important role inthe sustainable development of coastal cities.There are three types of coastal cities for consideration.Thefirst type of city is like Tianjin.The most significant damage is from the upper reach flood.The effect ofstorm surge is negligible,because in the estuary of the Haihe River,tidal locks are built.The Grey MarkovModel(GMM)is used to forecast the flood peak level.GMM combines the Grey system and the Markovtheory into a high-precision model.The predicted flood peak levels are close to the measured data.A syn-thetic model is established for economic assessment,risk analysis and flood-control benefit estimation.Asa n  相似文献   

9.
连云港温带风暴潮及可能最大温带风暴潮的计算   总被引:6,自引:2,他引:6  
用46a资料首次对连云港温带风暴潮进行了统计分析,计算了不同重现期的温带风暴潮(增、减水)值,并划分引起温带风暴潮的天气类型;进而首次构造引起连云港可能最大温带风暴潮(增、减水)的天气系统;最后,采用经过典型温带风暴潮过程数值模拟检验的风暴潮数学模型,计算了连云港可能最大温带风暴潮,计算结果已被江苏田湾(连云港)核电站厂址设计部门采用.  相似文献   

10.
Residual circulation patterns in a channel network that is tidally driven from entrances on opposite sides are controlled by the temporal phasing and spatial asymmetry of the two forcing tides. The Napa/Sonoma Marsh Complex in San Francisco Bay, CA, is such a system. A sill on the west entrance to the system prevents a complete tidal range at spring tides that results in tidal truncation of water levels. Tidal truncation does not occur on the east side but asymmetries develop due to friction and off-channel wetland storage. The east and west asymmetric tides meet in the middle to produce a barotropic convergence zone that controls the transport of water and sediment. During spring tides, tidally averaged water-surface elevations are higher on the truncated west side. This creates tidally averaged fluxes of water and sediment to the east. During neap tides, the water levels are not truncated and the propagation speed of the tides controls residual circulation, creating a tidally averaged flux in the opposite direction.  相似文献   

11.
胶州湾高分辨率三维风暴潮漫滩数值模拟   总被引:1,自引:0,他引:1  
基于海表气压项改进的FVCOM(Finite-Volume Coastal Ocean Model)海洋模式,研发胶州湾高分辨率三维风暴潮漫滩数值模式(JS-FVCOM).利用 JS-FVCOM 模式通过对天文潮、台风强度和径流3要素的不同组合,共设计了5个试验,分别进行风暴潮漫滩模拟实验.分析各试验结果得到如下结论:(1)随着台风最大风速的增加,风暴潮增水迅速增加,当综合水位超过防潮堤高程后增水速度明显减慢.海水淹没范围和淹没深度受综合水位超防潮堤高程时间影响明显.(2)在入海河流的河口区,当洪水位与高潮位相遇时,由于高潮位的顶托作用,洪水下泄不畅,造成综合水位上升明显,极易发生海水漫溢现象.JS-FVCOM 的模拟结果清楚地再现了海水漫堤的淹没过程,可为紧急情况下的人员疏散提供科学的基础数据.  相似文献   

12.
长江口以外海域风暴潮与天文潮的非线性相互作用   总被引:5,自引:2,他引:3  
一个二维数值模式被用于研究长江口以外海域的风暴潮与天文潮的非线性相互作用。用这个模式模拟了 1981年 8114号台风与天文潮共同作用下所引起的风暴潮增水。 8114号台风是近 2 0年中最重要的台风之一。该台风登陆点附近有吴淞验潮站 ,这里有完整的风暴潮水位记录。计算结果与该站实测值符合较好 ,说明模拟是成功的。此外 ,从模拟结果中还可得出一些有益的结论  相似文献   

13.
A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined effect of the storm surge and an astronomical tide.The storm surge depends on many factors,such as the tracks of typhoon movement,the intensity of typhoon,the topography of sea area,the amplitude of tidal wave,the period during which the storm surge couples with the tidal wave.When coupling with different parts of a tidal wave,the storm surges caused by a typhoon vary widely.The variation of the storm surges is studied.An once-in-a-century storm surge was caused by Typhoon 7203 at Huludao Port in the north of the Liaodong Bay from July 26th to 27th,1972.The maximum storm surge is about 1.90 m.The wind field and pressure field used in numerical simulations in the research were derived from the historical data of the Typhoon 7203 from July 23rd to 28th,1972.DHI Mike21 is used as the software tools.The whole Bohai Sea is defined as the computational domain.The numerical simulation models are forced with sea levels at water boundaries,that is the tide along the Bohai Straits from July 18th to 29th(2012).The tide wave and the storm tides caused by the wind field and pressure field mentioned above are calculated in the numerical simulations.The coupling processes of storm surges and tidal waves are simulated in the following way.The first simulation start date and time are 00:00 July 18th,2012; the second simulation start date and time are 03:00 July 18th,2012.There is a three-hour lag between the start date and time of the simulation and that of the former one,the last simulation start date and time are 00:00 July 25th,2012.All the simulations have a same duration of 5 days,which is same as the time length of typhoon data.With the first day and the second day simulation output,which is affected by the initial field,being ignored,only the 3rd to 5th day simulation results are used to study the rules of the storm surges in the north of the Liaodong Bay.In total,57 cases are calculated and analyzed,including the coupling effects between the storm surge and a tidal wave during different tidal durations and on different tidal levels.Based on the results of the 57 numerical examples,the following conclusions are obtained:For the same location,the maximum storm surges are determined by the primary vibration(the storm tide keeps rising quickly) duration and tidal duration.If the primary vibration duration is a part of the flood tidal duration,the maximum storm surge is lower(1.01,1.05 and 1.37 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).If the primary vibration duration is a part of the ebb tidal duration,the maximum storm surge is higher(1.92,2.05 and 2.80 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).In the mean time,the sea level restrains the growth of storm surges.The hour of the highest storm tide has a margin of error of plus or minus 80 min,comparing the high water hour of the astronomical tide,in the north of the Liaodong Bay.  相似文献   

14.
以实验室二维温带风暴潮数值模型为基础,综合考虑海洋潮波动力与风应力联合作用,建立温带风暴潮三维数值计算模型.模型从推导三维风暴潮基本控制方程出发,并应用交替方向隐格式(ADI)方法对方程进行离散求解.对于浅水动边界,模型采取局部深槽、缩小水域的活动边界处理方法.利用拟三维数值计算方法,并提出了非平面水深等分模式和平面等水深分布模式,应用这两种计算模式分别对渤海湾2009年5月8~10日发生的风暴潮过程进行了数值模拟.将风暴潮位计算结果和增水位计算结果与塘沽验潮站的实际观测数值进行对比验证,结果显示受风应力与潮波联合作用的风暴潮位和增水位与实测数据吻合良好;通过比较得到了平面等水深分布模式的计算成果要比非平面水深等分模式的计算成果更接近观测资料的结论,为风暴潮预报提供了理论依据.  相似文献   

15.
基于ADCIRC建立了三门湾风暴潮模型,模型模拟结果与实测数据吻合较好。以可能最大热带气旋参数为基础构建了多种假想台风路径来计算三门核电厂址处的可能最大风暴潮增水。结果表明,NW向登陆且距离核电厂址左侧为R(最大风速半径)时的假想台风使得三门核电厂址处的增水达到最大,风暴潮增水最大值为4.58 m。将可能最大风暴潮增水叠加天文高潮位进行计算,厂址前沿处水位达到了7.75 m,而三门湾顶附近的最高水位已经达到9 m,超出了三门湾沿岸海堤高程。将三门湾沿岸陆地依照高程概化为计算区域进行漫堤计算,当天文高潮位叠加可能最大风暴潮水位时,三门湾沿岸会发生漫堤溢流现象,淹没范围最严重的区域出现在湾顶处,最大淹没面积达到了120 km2。此时厂址前沿最高潮位为7.25 m,与不溢流相比下降了0.50 m。本研究可为三门核电厂址的安全防护提供科学依据。  相似文献   

16.
Because of the special topography and large tidal range in the South Yellow Sea,the dynamic process of tide and storm surge is very complicated.The shallow water circulation model Advanced Circulation(ADCIRC)was used to simulate the storm surge process during typhoon Winnie,Prapiroon,and Damrey,which represents three types of tracks attacking the South Yellow Sea,which are,moving northward after landing,no landing but active in offshore areas,and landing straightly to the coastline.Numerical experiments were carried out to investigate the effects of tidal phase on the tide-surge interaction as well as storm surge.The results show that the peak surge caused by Winnie and Prapiroon occurs 2-5 h before the high tide and its occurring time relative to high tide has little change with tidal phase variations.On the contrary,under the action of Damrey,the occurring time of the peak surge relative to high tide varies with tidal phase.The variation of tide-surge interaction is about 0.06-0.37 m,and the amplitude variations of interaction are smooth when tidal phase changes for Typhoon Winnie and Prapiroon.While the interaction is about 0.07-0.69 m,and great differences exists among the stations for Typhoon Damrey.It can be concluded that the tide-surge interaction of the former is dominated by the tidal phase modulation,and the time of surge peak is insensitive to the tidal phase variation.While the interaction of the latter is dominated by storm surge modulation due to the water depth varying with tide,the time of surge peak is significantly affected by tidal phase.Therefore,influence of tidal phase on storm surge is related to typhoon tracks which may provide very useful information at the design stage of coastal protection systems.  相似文献   

17.
Risk Assessment for Tuzla Naval Base Breakwater   总被引:5,自引:0,他引:5  
1 .IntroductionTurkeywasstruckbytwomajorearthquakeeventsonAugust 1 7thandNovember 1 2th ,1 999,namedIzmit (Mw=7.4 )andD櫣zce (Mw=7.2 )earthquakes,respectively .ThestationsoperatedbytheGeneralDirectorateofDisasterAffairs,theKandilliObservatoryandEarthquakeResearchInstituteofIstanbulTechnicalUniversitymeasuredatleast 2 7stronggroundmotionsfortheIzmitearthquakewithin 2 0 0kmofthefault.AsignificantsegmentofthefaultrupturedintheareabetweenthewestofGolcukandtheeastofLakeSapanca .Inthesou…  相似文献   

18.
丁瑞  朱良生 《海洋工程》2018,36(4):147-154
以海口湾为例,通过建立天文潮与风暴潮耦合数值模型,以典型强台风海鸥为基础,对未来台风增强、海平面上升和填海工程对海口湾风暴潮的影响分别进行了诊断分析,并计算了三者的共同作用在未来100年对风暴增水最大值的变化幅度。结果表明:1)台风强度增强大幅度增加海口湾沿岸风暴增水最大值,台风强度增强10%时,海口湾沿岸控制点风暴增水最大值增加12%~18%;2)海口湾地区在海平面上升的影响下风暴增水最大值反而减小,仅有部分岸段风暴增水值最大增加,不同海域风暴增水变化对海平面上升的响应不同;3)不合理的人工岛建设方案会显著增加对岸风暴最大增水值;4)在台风增强、海平面上升和不合理的海湾填海共同影响下,未来100年风暴增水最大值将增加12%~28%。显然这样的风暴增水变化会引起严重的灾害和后果,本研究可为海口湾防灾减灾工作提供依据。  相似文献   

19.
The offshore tide becomes strongly distorted as it propagates into shallow estuarine systems. Observations of sea surface elevation and horizontal currents over periods ranging from three days to one year, at nine stations within Nauset inlet/estuary, document the non-linear interaction of the off-shore equilibrium tidal constituents. Despite strong frictional attenuation within the estuary, the overtides and compound tides of M2, S2 and N2, in particular, reach significant amplitude, resulting in strong tidal distortion. High frequency forced constituents in sea surface are phase-locked, consistently leading the forcing tides by 60–70°, resulting in a persistent distortion where falling tide is longer than rising tide. Forced constituents in currents are more nearly in phase with equilibrium constituents, producing flood currents which are shorter but more intense than ebb currents. A compound fortnightly tide, MSf, modulates the mean water level such that lowest tides occur during neap phase instead of spring phase. This fortnightly tide can be contaminated by storm surge, changing the phase characteristics of this constituent. Implications of the overtides, compound tides, and lower frequency tides on near-bed, suspended and dissolved material transport are profound.  相似文献   

20.
基于辽东东探区1966—2007年出现的76次温带气旋减水过程,对10个工程地点抽取了10个统计样本。考虑每年温带气旋出现频次的影响,使用泊松最大熵分布对其进行减水的长期统计分析。得到100年一遇和50年一遇最大幅度的减水重现值分别为304和286cm。由于受地形的影响,北部海域的减水幅度大于南部区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号