首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于POM模式与blending同化法建立中国近海潮汐模型   总被引:1,自引:1,他引:1       下载免费PDF全文
利用POM海洋数值模式建立了中国近海(2°N-41°N,99°E~132°E)分辨率为5′×5′的潮汐模型,模式采用blending同化法同化了由10年TOPEX/Poseidon测高数据反演的潮汐参数与沿岸52个验潮站观测。精度分析表明建立的潮汐模型的8分潮RSS为12.5cm。  相似文献   

2.
Sea level data measured by TOPEX/POSEIDON over the Japan Sea from 1993 to 1994 is analyzed by assimilation using an approximate Kalman filter with a 1.5 layer (reduced-gravity) shallow water model. The study aims to extract signals associated with the first baroclinic mode and to determine the extent of its significance. The assimilation dramatically improves the model south of the Polar Front where as much as 20 cm2 of the observed sea level variance can be accounted for. In comparison, little variability in the northern cold water region is found consistent with the model dynamics, possibly due to significant differences in stratification.  相似文献   

3.
Mesoscale eddies in the Kuroshio recirculation region south of Japan have been investigated by using surface current data measured by an Acoustic Doppler Current Profiler (ADCP) installed on a regular ferry shuttling between Tokyo and Chichijima, Bonin Islands, and sea surface height anomaly derived from the TOPEX/POSEIDON altimeter. Many cyclonic and anticyclonic eddies were observed in the region. Spatial and temporal scales of the eddies were determined by lag-correlation analyses in space and time. The eddies are circular in shape with a diameter of 500 km and a temporal scale of 80 days. Typical maximum surface velocity and sea surface height anomaly associated with the eddies are 15–20 cm s–1 and 15 cm, respectively. The frequency of occurrence, temporal and spatial scales, and intensity are all nearly the same for the cyclonic and anticyclonic eddies, which are considered to be successive wave-like disturbances rather than solitary eddies. Phase speed of westward propagation of the eddies is estimated as 6.8 cm s–1, which is faster than a theoretical estimate based on the baroclinic first-mode Rossby wave with or without a mean current. The spatial distribution of sea surface height variations suggests that these eddies may be generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region, though further studies are needed to clarify the generation processes.  相似文献   

4.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as - 0.3 m, and surface wind speed of - 1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ - 1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

5.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as ±0.3 m, and surface wind speed of ±1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ ±1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

6.
Assimilation of satellite-derived surface datasets has been explored in the study. Three types of surface data, namely sea level anomaly, sea surface temperature and sea surface salinity, have been used in various data assimilation experiments. The emphasis has been on the extra benefit arising out of the additional sea level assimilation and hence there are two parallel runs, in one of which sea level assimilation has been withheld. The model used is a state-of-the art ocean general circulation model (OGCM) and the assimilation method is the widely used singular evolutive extended Kalman filter (SEEK). Evaluation of the assimilation skill has been carried out by comparing the simulated depth of the 20°C isotherm with the same quantity measured by buoys and Argo floats. Simulated subsurface temperature and salinity profiles have also been compared with the same profiles measured by Argo floats. Finally, surface currents in the assimilation runs have been compared with currents measured by several off-equatorial buoys. Addition of sea level has been found to substantially improve the quality of simulation. An important feature that has been effectively simulated by the addition of sea level in the assimilation scheme is the near-surface temperature inversion (2-3°C) in the northern Bay of Bengal.  相似文献   

7.
We present calibration results from Jason-1 (2001-) and TOPEX/POSEIDON (1992-) overflights of a California offshore oil platform (Harvest). Data from Harvest indicate that current Jason-1 sea-surface height (SSH) measurements are high by 138 ± 18 mm. Excepting the bias, the high accuracy of the Jason-1 measurements is in evidence from the overflights. In orbit for over 10 years, the T/P measurement system is well calibrated, and the SSH bias is statistically indistinguishable from zero. Also reviewed are over 10 years of geodetic results from the Harvest experiment.  相似文献   

8.
《Marine Geodesy》2013,36(3-4):239-259
We present calibration results from Jason-1 (2001–) and TOPEX/POSEIDON (1992–) overflights of a California offshore oil platform (Harvest). Data from Harvest indicate that current Jason-1 sea-surface height (SSH) measurements are high by 138 ± 18 mm. Excepting the bias, the high accuracy of the Jason-1 measurements is in evidence from the overflights. In orbit for over 10 years, the T/P measurement system is well calibrated, and the SSH bias is statistically indistinguishable from zero. Also reviewed are over 10 years of geodetic results from the Harvest experiment.  相似文献   

9.
渤、黄、东海潮汐的一种验潮站资料同化数值模式   总被引:2,自引:0,他引:2  
以往的研究表明,采用直接的数值计算所得渤、黄、东海潮汐分布与实测值存在一定偏差。为了改善数值计算结果,建立了一种同化数值模式。计算中,在连续方程中增加了一个松弛项,将模式结果向已有实测调和常数的控制点推算潮高值趋近。在数值模拟中,共选取40个沿岸和岛屿验潮站作为控制点,另外选取71个验潮站作为检验点。数值实验表明,随着松弛系数的增加,控制点的计算和实测调和常数之差逐渐减小,直至松弛系数太大时,计算溢出。与此同时,检验点的计算和实测调和常数之偏差开始时也同步地明显减小,但当松弛系数加大到一定数值后,偏差值基本上不再减小,表明通过松弛同化可以改善计算结果,但计算与实测的逼近程度仍有一定限度。对沿岸111个验潮站计算值与实测值的比较表明,对M2分潮,振幅和迟角偏差分别从同化前的6.9cm和5.6°减小至同化后的3.5cm和3.1°;对S2分潮,从2.5cm和6.5°减小至1.9cm和4.0°;对K1分潮,从3.0cm和7.8°减小至1.4cm和4.1°;对O1分潮,从2.0cm和7.5°减小至1.3cm和4.2°。  相似文献   

10.
《Marine Geodesy》2013,36(3-4):367-382
The verification phase of the Jason-1 satellite altimeter mission presents a unique opportunity for comparing near-simultaneous, independent satellite measurements. Here we examine simultaneous significant wave height measurements by the Jason-1 and TOPEX/Poseidon altimeters. These data are also compared with in situ measurements from deep-ocean buoys and with predicted wave heights from the Wave Watch III operational model. The rms difference between Jason and TOPEX wave heights is 28 cm, and this can be lowered by half through improved outlier editing and filtering of high-frequency noise. Noise is slightly larger in the Jason dataset, exceeding TOPEX by about 7 cm rms at frequencies above 0.05 Hz, which is the frequency at which the coherence between TOPEX and Jason measurements drops to zero. Jason wave heights are more prone to outliers, especially during periods of moderate to high backscatter. Buoy comparisons confirm previous reports that TOPEX wave heights are roughly 5% smaller than buoy measurements for waves between 2 and 5 m; Jason heights in general are 3% smaller than TOPEX. Spurious dips in the TOPEX density function for 3- and 6-m waves, a problem that has existed since the beginning of the mission, can be solved by waveform retracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号