首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文主要介绍了太古宙克拉通岩石圈地幔的一些基本特征,国内外有关早期地幔研究的最新进展和发展趋势,主要包括以下几方面:1.太古宙岩石圈地幔的岩石组成和化学组成;2.太古宙地幔同位素体系;3.太古宙地幔热状态和结构特征;4.幔内地质事件。通过研究主要获得以下认识:1.早太古代岩石圈演化以壳-幔分异作用为主,晚太古代以壳内分异作用为主;2.太古宙存在一个又厚又冷(200km)的岩石圈;3.幔内地质作用与  相似文献   

2.
东南沿海地区古近纪大陆岩石圈地幔特征及成因   总被引:3,自引:0,他引:3  
东南沿海地区新生代玄武岩中的橄榄岩包体来自岩石圈地幔 ,上地幔橄榄岩包体的岩石学及地球化学特征都记录了地幔演化的历史。普宁橄榄岩包体斜方辉石含量与太古宙克拉通地幔类似 ,但在矿物学、REE、痕量元素和Sr Nd同位素上又与太古宙岩石圈地幔不同。橄榄岩包体的岩相学、矿物学、REE、痕量元素特征都提供了含H2 O富Si流体交代橄榄岩的证据 ,这种流体可能主要是洋壳物质局部熔融而成。流体交代使橄榄岩富Si,同时富Sr、Pb和强不相容元素等大洋岩石圈物质。这表明普宁大陆岩石圈地幔既保留太古宙岩石圈地幔的特征 ,又具有大洋俯冲地幔的特征 ,它是古老岩石圈地幔向大洋岩石圈地幔转换的一部分 ,这种转换可能是大洋岩石圈与大陆岩石圈地幔相互作用的结果。  相似文献   

3.
华北东部古生代岩石圈地幔经历过复杂的多旋回多阶段熔融岩浆、重结晶、变质和剪切变形历史,因而岩石组成、结构复杂.地幔橄榄岩的主元素、地幔矿物特别是金刚石中的包裹体的Mg#值及Cr#值等显示古生代岩石圈地幔高度难熔亏损玄武质的成分特征,而地幔橄榄岩的不相容元素、同位素显示高度富集的特点.这种高难熔和强富集两重性是克拉通岩石圈地幔的特征.Pb同位素反映华北东部古生代岩石圈地幔具冈瓦纳大陆地幔的特点.复县和蒙阴古生代岩石圈地幔尽管都表现为太古代克拉通地幔的特征,但存在着不均一性,前者受克拉通化后的深部作用影响强于后者.与新生代地幔Sr、Nd同位素对比表明富集的古生代岩石圈地幔向亏损新生代的地幔转变和减薄伴有新生地幔物质对古老岩石圈的置换和混合作用.  相似文献   

4.
高山  刘勇胜 《地学前缘》2003,10(3):61-67
测定了辽宁复县奥陶纪金伯利岩和河北汉诺坝与山东栖霞第三纪碱性玄武岩中产出的地幔包体的Re Os同位素组成。金伯利岩中地幔包体的Re贫化Os同位素模式年龄 (TRD)为 2 .5~ 2 .8Ga ,从Re Os同位素定年角度证明了华北克拉通确实存在太古宙岩石圈地幔。对汉诺坝二辉橄榄岩包体获得了 (1.9± 0 .18)Ga的Re Os同位素等时线年龄 ,表明现今保存在那里的地幔主要是古元古代时形成的。汉诺坝地区出露有大量新太古代岩石 ,表明曾存在太古宙地幔。由于缺乏太古宙年龄 ,说明由汉诺坝所代表的克拉通中部曾存在的太古宙地幔在古元古代时已被减薄 ,并被 1.9Ga的新生岩石圈地幔置换。该事件与华北克拉通中部广泛的古元古代碰撞造山过程导致的麻粒岩相变质作用的时代相同 ,说明有关的岩石圈置换作用可能主要与拆沉作用有关。栖霞地幔包体具有与现代对流地幔相同的Os同位素组成 ,且Os同位素组成与Re/Os比值没有明显相关性 ,表明年龄很新。结合其它地质地球化学证据 ,说明克拉通东部的太古宙岩石圈地幔的置换作用主要发生在中生代 ,且可能与三叠纪华北和扬子陆块的陆陆碰撞造山导致的岩石圈地幔和下地壳的拆沉作用有关。本研究表明华北克拉通岩石圈地幔置换作用在时空上的分布是十分不均一的。 2 .5~ 2 .8Ga与 1.9Ga不仅?  相似文献   

5.
近年所获得的华北各地区太古代变质火山岩系9个较准确的Sm-Nd同位素年龄及初始Nd同位素比值表明,华北太古代(3500—2500Ma)上地幔都是亏损的,但在1000Ma范围內其ε_(Nd)值一直恒定在+3左右,与全球太古代亏损地幔Nd同位素演化规律一致。这表明华北太古代的构造体制有可能使大量地壳物质重新进入地幔从而保持ε_(Nd)值的恒定。如果华北大陆岩石圈地幔的主体是在太古代时从对流上地幔中分离出来的,利用该区太古代上地幔Nd同位素组成及其可能的sm/Nd值进行计算,可获得该区岩石圈非交代地幔应是与N型大洋中脊玄武岩(以下简称MORB)源类似或更亏损的高亏损地幔,其现代ε-(Nd)值最大变化范围在+7—+23之间。至今在华北我们尚未发现由这种高亏损非交代大陆岩石圈地幔产生的大陆玄武岩。如果某些大陆玄武岩可能产生于大陆岩石圈地幔,则其源区必定是经过地幔交代作用再富集了的地幔。  相似文献   

6.
来自华北克拉通山东省中生代镁铁质岩石及地幔包体的橄榄石氧同位素组成显示,早白垩世岩石圈地幔主要受到了来自俯冲的华南陆壳不同组分的改造作用,包括镁铁质下地壳和长英质上地壳组分以及少量的海相沉积碳酸盐岩,而晚白垩世的岩石圈地幔则受到了来自俯冲的太平洋板块的改造。早白垩世受俯冲陆壳改造的岩石圈地幔橄榄石相对正常地幔高δ18O (6.0‰~7.2‰),而晚白垩世被俯冲洋壳改造的局部地幔则相对正常地幔低δ18O (4.1‰~5.3‰)。板块俯冲作用是导致华北克拉通岩石圈地幔破坏的重要深部机制,三叠纪华南陆壳深俯冲导致了华北克拉通地幔强烈富集相容组分而转变为易熔的岩石圈,早白垩世大规模幔源岩浆的侵位很可能与俯冲大陆板片的整体断离或拆离作用相关;晚中生代以来的太平洋俯冲作用则引发了岩石圈地幔的置换和增生作用,形成了目前新、老地幔共存的格局。  相似文献   

7.
华北中、新生代玄武质火山岩和基性脉岩携带的地幔橄榄岩捕虏体中橄榄石和/或橄榄石捕虏晶系统的组成填图显示华北东部中、新生代岩石圈地幔存在明显的时空分布规律和不均一性。这与通过岩石圈地幔源基性岩石的地球化学反演获得的华北中生代岩石圈地幔的时空不均一性及其块体特征完全一致。太行山和鲁皖地区新生代岩石圈地幔的差异演化主要反映古老地幔橄榄岩与熔体相互作用时熔体性质和来源的不同。同时,橄榄石 Fo 填图还揭示了郯庐断裂对华北东部中、新生代基性岩浆活动及其岩石圈地幔演化的重要制约作用。而且,华北东部中生代岩石圈减薄后尚存古老岩石圈地幔残留。因此,华北东部岩石圈减薄的整体拆沉模式很难成立。  相似文献   

8.
蛇绿岩研究的进展   总被引:12,自引:0,他引:12  
近几年蛇绿岩的研究已取得显著的进展,主要反映在下述几个方面:1.对于蛇绿岩的概念已有了新的认识,蛇绿岩代表古代的大洋岩石圈碎片,但并非正常的大洋岩石圈;2.关于蛇绿岩的多样性已经提出了许多不同的见解,最近有关特提斯与环太平洋蛇绿岩的对比研究使许多作者得出结论,它们具有不同的特征;3.蛇绿岩源区的研究表明,蛇绿岩并非唯一地来自亏损的软流圈地幔,不同地幔端元之间的混合以及来自陆壳物质的混染作用也是常见的现象;4.早元古代蛇绿岩的发现。预期90年代,在蛇绿岩的多样性、地幔岩部分熔融、岩浆来源、蛇绿岩的侵位机制以及蛇绿岩与高压变质作用等方面将取得长足的进展.  相似文献   

9.
本文综述了上陆壳成分及其变化等方面的研究进展.根据对化学分析、地质图、地层剖面和同位素年龄等资料的综合研究.确定了原始上陆壳的平均化学成分随时间而变化。太古亩高的深成岩/上壳岩比值可能部分反映了2.5Ga前有不同的地壳形成模式.后太古亩绿岩中,长英质火山岩和杂砂岩增多;在太古宙/元古宙界线,绿岩中科马提岩的含量几乎减少至零;显生宙绿合中安山岩比例增多。与早太古代相比.晚太古代和后太古宙上陆壳亏损Mg、Cr、Ni和Cc;后太古宙上陆壳富集大离子亲石元素、高场强元素和重稀土元素。上陆壳成分在太古亩/元古宙界线的变化,可能与科马提岩、TTG岩套、交代作用和和古风化作用的影响有关。  相似文献   

10.
中国东部显生宙地幔演化的主要样式 :“蘑菇云”模型   总被引:90,自引:19,他引:71  
从地幔类型、地球物理资料、岩石学研究成果 3方面讨论了中国东部显生宙地幔演化的主要样式 ,认为古老岩石圈地幔物质以亏损玄武质组分的橄榄岩为主 ,岩石密度低 ,具上浮性质 ,是克拉通稳定的主要原因 ,不可能发生因重力诱发的拆沉作用。白垩纪晚期—新生代地幔成分为饱满的二辉橄榄岩 ,地温高 ,明显有别于古老地幔。该热地幔物质呈“蘑菇云”状上涌 ,蘑菇云之间仍有古老地幔的残留体 ,二者多数呈陡边界接触 ,这是东部地幔演化的主要样式。与此同时岩石圈伸展导致岩石圈减薄。中生代中国东部绝大部分地区地温很高、地壳厚度大 ,但许多问题尚待研究。古老岩石圈地幔中的低速、低阻物质为流体和低熔程度的熔体 ,它们呈脉状、透镜状 ;新生代地幔中的该物质为含熔体的软流圈物质 ,它们呈多个蘑菇云状 ;中生代地幔中的低速物质可能为大量的玄武质熔体 ,呈蘑菇云平流层状。中生代壳幔相互作用明显 ,克拉通稳定时期及新生代时期层圈之间相互作用的活跃带位于岩石圈与软流圈之间。  相似文献   

11.
A new approach to the investigation of the Sm/Nd evolution of the upper mantle directly from the data on lherzolite xenoliths is described in this paper.It is demonstrated that the model age TCHUR of an unmetasomatic iherzolite zenolith ca represent the mean depletion age of its mantle source, thus presenting a correlation trend between f^Sm/Nd and the mean depletion age of the upper mantle from the data on xenoliths.This correlation trend can also be derived from the data on river suspended loads as well as from granitoids.Based on the correlation trend mentioned above and mean depletion ages of the upper mantle at various geological times, an evolution curve for the mean f^Sm/Nd value of the upper mantle through geological time has been established.It is suggested that the upwilling of lower mantle material into the upper mantle and the recycling of continental crust material during the Archean were more active ,thus maintaining fairly constantf^Sm/Nd and εNd values during this time period. Similarly ,an evolution curve for the mean f^Sm/Nd value of the continental crust through geological time has also been established from the data of continental crust material.In the light of both evolution curves for the upper mantle and continental crust ,a growth curve for the continental crust has been worked out ,suggesting that :(1)about 30%(in volume )of the present crust was present as the continental crust at 3.8 Ga ago ;(2)the growth rate was much lower during the Archean ;and (3)the Proterozoic is another major period of time during which the continental crust wsa built up .  相似文献   

12.
The eastern part of the Guiana Shield, northern Amazonian Craton, in South America, represents a large orogenic belt developed during the Transamazonian orogenic cycle (2.26–1.95 Ga), which consists of extensive areas of Paleoproterozoic crust and two major Archean terranes: the Imataca Block, in Venezuela, and the here defined Amapá Block, in the north of Brazil.

Pb-evaporation on zircon and Sm–Nd on whole rock dating were provided on magmatic and metamorphic units from southwestern Amapá Block, in the Jari Domain, defining its long-lived evolution, marked by several stages of crustal accretion and crustal reworking. Magmatic activity occurred mainly at the Meso-Neoarchean transition (2.80–2.79 Ga) and during the Neoarchean (2.66–2.60 Ga). The main period of crust formation occurred during a protracted episode at the end of Paleoarchean and along the whole Mesoarchean (3.26–2.83 Ga). Conversely, crustal reworking processes have dominated in Neoarchean times. During the Transamazonian orogenic cycle, the main geodynamic processes were related to reworking of older Archean crust, with minor juvenile accretion at about 2.3 Ga, during an early orogenic phase. Transamazonian magmatism consisted of syn- to late-orogenic granitic pulses, which were dated at 2.22 Ga, 2.18 Ga and 2.05–2.03 Ga. Most of the εNd values and TDM model ages (2.52–2.45 Ga) indicate an origin of the Paleoproterozoic granites by mixing of juvenile Paleoproterozoic magmas with Archean components.

The Archean Amapá Block is limited in at southwest by the Carecuru Domain, a granitoid-greenstone terrane that had a geodynamic evolution mainly during the Paleoproterozoic, related to the Transamazonian orogenic cycle. In this latter domain, a widespread calc-alkaline magmatism occurred at 2.19–2.18 Ga and at 2.15–2.14 Ga, and granitic magmatism was dated at 2.10 Ga. Crustal accretion was recognized at about 2.28 Ga, in agreement with the predominantly Rhyacian crust-forming pattern of the eastern Guiana Shield. Nevertheless, TDM model ages (2.50–2.38 Ga), preferentially interpreted as mixed ages, and εNd < 0, point to some participation of Archean components in the source of the Paleoproterozoic rocks. In addition, the Carecuru Domain contains an oval-shaped Archean granulitic nucleus, named Paru Domain. In this domain, Neoarchean magmatism at about 2.60 Ga was produced by reworking of Mesoarchean crust, as registered in the Amapá Block. Crustal accretion events and calc-alkaline magmatism are recognized at 2.32 Ga and at 2.15 Ga, respectively, as well as charnockitic magmatism at 2.07 Ga.

The lithological association and the available isotopic data registered in the Carecuru Domain suggests a geodynamic evolution model based on the development of a magmatic arc system during the Transamazonian orogenic cycle, which was accreted to the southwestern border of the Archean Amapá Block.  相似文献   


13.
华北克拉通具有3.8Ga以上的演化历史,TTG是其地质记录的最重要载体。华北克拉通太古宙(特别是中太古代以前)地质演化在很大程度上与TTG岩石密切相关。在华北克拉通,始太古代(3.6~4.0Ga)TTG岩石仅在鞍本地区被发现,但冀东地区已在多种变质碎屑沉积岩中发现大量3.6~3.88Ga碎屑锆石;古太古代(3.2~3.6Ga)TTG岩石在鞍本、冀东、信阳地区被识别出来;中太古代(2.8~3.2Ga)TTG岩石在鞍本、冀东、胶东、鲁山等地存在;可把新太古代(2.5~2.8Ga)进一步划分为早期和晚期两个阶段:新太古代早期(2.6~2.8Ga)TTG岩石已在10余个地区被发现,新太古代晚期(2.5~2.6Ga)TTG岩石几乎在每一个太古宙基底岩石出露区都存在。野外地质、锆石定年、元素地球化学和Nd-Hf同位素组成研究表明,中太古代以前TTG岩石局部存在,主要分布于Wan et al.(2015)所划分的三个古陆块中;新太古代TTG岩石广泛分布,是陆壳增生最重要时期岩浆作用的产物。TTG岩石类型随时代变化,3.1~3.8Ga和2.7~2.9Ga TTG岩石分别主要为奥长花岗岩和英云闪长岩;2.5~2.6Ga期间花岗闪长岩大规模出现,并有壳源花岗岩广泛分布,表明这时陆壳已有相当的成熟度。奥长花岗岩轻重稀土分异程度从弱到强的时间出现在~3.3Ga;2.5~3.3Ga的TTG岩石轻重稀土分异程度变化很大,表明其形成条件存在很大差异。TTG岩石主要为新生地壳,但也有相当部分为壳内再循环产物或形成过程中受到陆壳物质影响。华北克拉通中太古代以前的主要构造机制是板底垫托或地幔翻转作用,新太古代晚期板块构造体制可能已起作用。  相似文献   

14.
The composition and formation of the Earth’s primitive continental crust and mantle differentiation are key issues to understand and reconstruct the geodynamic terrestrial evolution, especially during the Archean. However, the scarcity of exposure to these rocks, the complexity of lithological relationships, and the high degree of superimposed deformation, especially with long-lived magmatism, make it difficult to study ancient rocks. Despite this complexity, exposures of the Archean Mairi Gneiss Complex basement unit in the São Francisco Craton offer important information about the evolution of South America’s primitive crust. Therefore, here we present field relationships, LA-ICP-SFMS zircon U-Pb ages, and LA-ICP-MCMS Lu-Hf isotope data for the recently identified Eoarchean to Neoarchean gneisses of the Mairi Complex. The Complex is composed of massive and banded gneisses with mafic members ranging from dioritic to tonalitic, and felsic members ranging from TTG (Tonalite-Trondhjemite-Granodiorite) to granitic composition. Our new data point to several magmatic episodes in the formation of the Mairi Gneiss Complex: Eoarchean (ca. 3.65–3.60 Ga), early Paleoarchean (ca. 3.55–3.52 Ga), middle-late Paleoarchean (ca. 3.49–3.33 Ga) and Neoarchean (ca. 2.74–2.58 Ga), with no records of Mesoarchean rocks. Lu-Hf data unveiled a progressive evolution of mantle differentiation and crustal recycling over time. In the Eoarchean, rocks are probably formed by the interaction between the pre-existing crust and juvenile contribution from chondritic to weakly depleted mantle sources, whereas mantle depletion played a role in the Paleoarchean, followed by greater differentiation of the crust with thickening and recycling in the middle–late Paleoarchean. A different stage of crustal growth and recycling dominated the Neoarchean, probably owing to the thickening of the continental crust by collision, continental arc growth, and mantle differentiation.  相似文献   

15.
Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time.Four types of mantle are characterized from incompatible element distributions in basalts and komatiites:depleted,hydrated,enriched and mantle from which komatiites are derived.Our most important observation is the recognition for the first time of what we refer to as a Great Thermal Divergence within the mantle beginning near the end of the Archean,which we ascribe to thermal and convective evolution.Prior to 2.5 Ga,depleted and enriched mantle have indistinguishable thermal histories,whereas at 2.5-2.0 Ga a divergence in mantle magma generation temperature begins between these two types of mantle.Major and incompatible element distributions and calculated magma generation temperatures suggest that Archean enriched mantle did not come from mantle plumes,but was part of an undifferentiated or well-mixed mantle similar in composition to calculated primitive mantle.During this time,however,high-temperature mantle plumes from dominantly depleted sources gave rise to komatiites and associated basalts.Recycling of oceanic crust into the deep mantle after the Archean may have contributed to enrichment of Ti,Al,Ca and Na in basalts derived from enriched mantle sources.After 2.5 Ga,increases in Mg~# in basalts from depleted mantle and decreases in Fe and Mn reflect some combination of growing depletion and cooling of depleted mantle with time.A delay in cooling of depleted mantle until after the Archean probably reflects a combination of greater radiogenic heat sources in the Archean mantle and the propagation of plate tectonics after 3 Ga.  相似文献   

16.
本文根据华北和扬子陆块及秦岭-大别造山带地表和深部出露的各种岩石中发现的继承性锆石的测年数据,报道了太古宙基底和岩浆事件的新信息,并简要地论述其地质意义。华北陆块东北缘、东南缘、北缘、西北缘共6个地区的深部都存在新太古代和中、古太古代岩浆事件的新信息;南缘深部也存在古太古代岩浆事件的新信息。在华北陆块早前寒武纪同位素年龄直方图(以太古宙岩浆事件为主)上,最高峰值位于2.45-2.6 Ga区间,而以2.5-2.55 Ga最为突出,显示该区间岩浆事件最为强烈,可能代表一次重要的碰撞事件。此外还见有2.7 Ga,2.8 -2.85 Ga,2.95-3.0 Ga,3.1-3.15 Ga,3.3-3.4 Ga,3.45-3.5 Ga,3.6 Ga和3.8 Ga等较高峰值,反映了岩浆事件不同活动阶段的演化趋势。扬子陆块北缘地表和深部有与华北陆块相似的太古宙古老基底信息。扬子陆块中部的长江中下游地区、东南缘相当于江南古陆的地区以及扬子陆块西南缘地区在地壳深部均保留有新太古代和/或古太古代岩浆锆石的年龄信息。秦岭-大别造山带从东到西,多处(主要是深部)也发现有新-中太古代残余岩浆锆石的年龄信息。  相似文献   

17.
华北克拉通古元古代区域构造至少可以划分出三大构造单元:(1)陆内裂谷带(2.30~2.60Ga);(2)陆缘造山带(2.30~2.60Ga);(3)再造的太古代克拉通区(麻粒岩相带)(大于2.50Ga).太古代末—古元古代重要的区域性构造-热事件序列依次为:(1)克拉通中部不同地壳层次伸展及裂谷盆地的发育;(2)克拉通北缘构造活动、增生及陆壳基底再造;(3)与大陆裂谷盆地闭合过程相联系的板内造山-前陆盆地发育.板块构造模式可以很好地解释上述构造作用类型.  相似文献   

18.
The Earth was born from a giant impact at 4.56 Ga. It is generally thought that the Earth subsequently cooled, and hence shrunk, over geologic time. However, if the Earth's convection was double-layered, there must have been a peak of expansion during uni-directional cooling. We computed the expansion-contraction effect using first principles mineral physics data. The result shows a radius about 120 km larger than that of the present Earth immediately after the consolidation of the magma-ocean on the surface, and subsequent shrinkage of about 110 km in radius within about 10 m.y., followed by gradual expansion of 11 km in radius due to radiogenic heating in the lower mantle in spite of cooling in the upper mantle in the Archean. This was due to double-layered convection in the Archean with final collapse of overturn with contraction of about 8 km in radius, presumably by the end of the Archean. Since then, the Earth has gradually cooled down to reduce its radius by around 12 km. Geologic evidence supports the late Archean mantle overturn ca. 2.6 Ga, such as the global distribution of super-liquidus flood basalts on nearly all cratonic fragments (>35 examples). If our inference is correct, the surface environment of the Earth must have undergone extensive volcanism and emergence of local landmasses, because of the thin ocean cover (3–5 km thickness). Global unconformity appeared in cratonic fragments with stromatolite back to 2.9 Ga with a peak at 2.6 Ga. The global magmatism brought extensive crustal melting to yield explosive felsic volcanism to transport volcanic ash into the stratosphere during the catastrophic mantle overturn. This event seems to be recorded by sulfur mass-independent fractionation (SMIF) at 2.6 Ga. During the mantle overturn, a number of mantle plumes penetrated into the upper mantle and caused local upward doming of by ca. 2–3 km which raised local landmasses above sea-level. The consequent increase of atmospheric oxygen enabled life evolution from prokaryotes to eukaryotes by 2.1 Ga, or even earlier in the Earth history.  相似文献   

19.
古老锆石和岩石的发现,是探索地球早期地质演化的关键.为进一步揭示扬子陆块基底物质组成和早期地壳形成演化,采用LA-ICP-MS锆石微区U-Pb测年,对扬子陆块西南缘禄丰地区东川群变质砂岩进行了年代学研究,发现3 822±21 Ma的古老碎屑锆石.这是目前在扬子陆块获得的第2颗>3.8 Ga的古老锆石,也是目前在该地区发现的最老锆石.变质砂岩碎屑物质主要包括4个峰值年龄(~2 320 Ma、~2 162 Ma、~2 036 Ma和~1 915 Ma),2颗最年轻的锆石年龄基本限定了东川群早期最大沉积时限,与区域上火山岩时代相吻合.另外还包含少量中-晚太古代(2.6~2.9 Ga)和始太古代(3.7~3.8 Ga)的碎屑物质.Hf同位素组成显示这些碎屑锆石具有不同成因,其中2 674~3 822 Ma的碎屑锆石总体具有正的εHf(t)值和2.9~3.9 Ga的两阶段模式年龄,暗示扬子陆块在冥古宙-古太古代时期就有一定规模的新生陆壳分布.古元古代(1.9~2.4 Ga)的岩浆活动除有少量古元古代(2.3~2.4 Ga)新生地壳组分熔融外,大多为太古宙(2.5~3.7 Ga)古老地壳部分熔融.中元古代更多表现为古老地壳的熔融和物质再循环.研究结果为深化扬子陆块早前寒武纪地质演化认识提供了新资料.   相似文献   

20.
We have determined U-Pb ages, trace element abundances and Hf isotopic compositions of approximately 1000 detrital zircon grains from the Mississippi, Congo, Yangtze and Amazon Rivers. The U-Pb isotopic data reveal the lack of >3.3 Ga zircons in the river sands, and distinct peaks at 2.7-2.5, 2.2-1.9, 1.7-1.6, 1.2-1.0, 0.9-0.4, and <0.3 Ga in the accumulated age distribution. These peaks correspond well with the timing of supercontinent assembly. The Hf isotopic data indicate that many zircons, even those having Archean U-Pb ages, crystallized from magmas involving an older crustal component, suggesting that granitoid magmatism has been the primary agent of differentiation of the continental crust since the Archean era. We calculated Hf isotopic model ages for the zircons to estimate the mean mantle-extraction ages of their source materials. The oldest zircon Hf model ages of about 3.7 Ga for the river sands suggest that some crust generation had taken place by 3.7 Ga, and that it was subsequently reworked into <3.3 Ga granitoid continental crust. The accumulated model age distribution shows peaks at 3.3-3.0, 2.9-2.4, and 2.0-0.9 Ga.The striking attribute of our new data set is the non-uniformitarian secular change in Hf isotopes of granitoid crusts; Hf isotopic compositions of granitoid crusts deviate from the mantle evolution line from about 3.3 to 2.0 Ga, the deviation declines between 2.0 and 1.3 Ga and again increases afterwards. Consideration of mantle-crust mixing models for granitoid genesis suggests that the noted isotopic trends are best explained if the rate of crust generation globally increased in two stages at around (or before) 3.3 and 1.3 Ga, whereas crustal differentiation was important in the evolution of the continental crust at 2.3-2.2 Ga and after 0.6 Ga. Reconciling the isotopic secular change in granitoid crust with that in sedimentary rocks suggests that sedimentary recycling has essentially taken place in continental settings rather than active margin settings and that the sedimentary mass significantly grew through addition of first-cycle sediments from young igneous basements, until after ∼1.3 Ga when sedimentary recycling became the dominant feature of sedimentary evolution. These findings, coupled with the lack of zircons older than 3.3 Ga in river sands, imply the emergence of large-scale continents at about 3.3 Ga with further rapid growth at around 1.3 Ga. This resulted in the major growth of the sedimentary mass between 3.3 and 1.3 Ga and the predominance of its cannibalistic recycling later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号