首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present high-resolution spectroscopic observations for a sample of 21 young, solar-type stars near the Sun recently discovered in the X-ray wavelength range during the ROSAT all-sky survey. Based on these observations, we derive the lithium (Li) abundances of these 21 sample stars. Using the lithium abundances and the X-ray luminosity, we investigated the relationship between the Li abundances and the X-ray activity. We found a clear correlation between the lithium abundances and the X-ray luminosity: as the X-ray luminosity became stronger, the lithium abundance decreases in our sample stars. Our sample results provide further evidence that a correlation appears to exist between Li abundances, X-ray activity and age for a large number of solar-type stars. The results also confirm the presence of very active young stars close to the Sun, in agreement with recent findings from UV and X-ray surveys.  相似文献   

2.
We have performed the calculations of the orbital evolution of dust particles from volcanic glass (p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting–Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0–7.6 solar radii for standard particles of the zodiacal cloud and 9.1–9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.  相似文献   

3.
The multi-antenna scintillation method of measuring the solar-wind velocity has been very effective, particularly near the Sun and at high heliographic latitudes where direct measurements are rare or non-existent. However, scintillation observations inherently involve an LOS integration. Several methods have been used to deal with this problem, but they all require the basic assumption that contributions from different parts of the LOS add linearly. This assumption is valid for weak scintillations where the Born approximation holds, but it is not correct for strong scintillations. In this article we compare simultaneous observations of the same radio source, and therefore the same solar wind, at radio wavelengths of 32 cm and 92 cm. The 32-cm observations at the European Incoherent Scatter Radar (EISCAT) were made in weak-scattering and those at 92 cm at the Solar-Terrestrial Environment Laboratory (STEL) were made in strong-scattering mode. The results showed no significant bias in velocity caused by strong scattering, confirming that the LOS inversion techniques can be extended into the strong-scattering regime.  相似文献   

4.
We analyze the spatial distribution of the intensity of radio emission from a cool filament in terms of the generalized Kippenhahn-Schluter model. Based on a numerical calculation of the centimeter radio emission and using the temperature transition layer model by Anzer and Heinzel (1999), we show that two symmetric brightening bands must be observed near the filament. The absence of any bands during observations with a sufficient angular resolution suggests that a different type of model is realized: a model with a narrow (unobservable) temperature transition layer across a magnetic field, in particular, a Kuperus-Raadu-type model.  相似文献   

5.
We search for persistent and quasi-periodic release events of streamer blobs during 2007 with the Large Angle Spectrometric Coronagraph on the Solar and Heliospheric Observatory and assess the velocity of the slow solar wind along the plasma sheet above the corresponding streamer by measuring the dynamic parameters of blobs. We find ten quasi-periodic release events of streamer blobs lasting for three to four days. In each day of these events, we observe three – five blobs. The results are in line with previous studies using data observed near the last solar minimum. Using the measured blob velocity as a proxy for that of the mean flow, we suggest that the velocity of the background slow solar wind near the Sun can vary significantly within a few hours. This provides an observational manifestation of the large velocity variability of the slow solar wind near the Sun.  相似文献   

6.
Interplanetary scintillation (IPS) measurements of the solar wind speed for the distance range between 13 and 37 R S were carried out during the solar conjunction of the Nozomi spacecraft in 2000?–?2001 using the X-band radio signal. Two large-aperture antennas were employed in this study, and the baseline between the two antennas was several times longer than the Fresnel scale for the X-band. We successfully detected a positive correlation of IPS from the cross-correlation analysis of received signal data during ingress, and estimated the solar wind speed from the time lag corresponding to the maximum correlation by assuming that the solar wind flows radially. The speed estimates range between 200 and 540?km?s?1 with the majority below 400?km?s?1. We examined the radial variation in the solar wind speed along the same streamline by comparing the Nozomi data with data obtained at larger distances. Here, we used solar wind speed data taken from 327 MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, and in?situ measurements by the Advanced Composition Explorer (ACE) for the comparison, and we considered the effect of the line-of-sight integration inherent to IPS observations for the comparison. As a result, Nozomi speed data were proven to belong to the slow component of the solar wind. Speed estimates within 30 R S were found to be systematically slower by 10?–?15 % than the terminal speeds, suggesting that the slow solar wind is accelerated between 13 and 30 R S.  相似文献   

7.
Summary. This review is primarily directed to the question whether photometric solar analogues remain such when subjected to detailed spectroscopic analyses and interpreted with the help of internal stucture models. In other words, whether the physical parameters: mass, chemical composition, age (determining effective temperature and luminosity), chromospheric activity, equatorial rotation, lithium abundance, velocity fields etc., we derive from the spectral analysis of a photometric solar analogue, are really close to those of the Sun. We start from 109 photometric solar analogues extracted from different authors. The stars selected had to satisfy three conditions: i) their colour index must be contained in the interval: –0.69, ii) they must possess a trigonometric parallax, iii) they must have undergone a high resolution detailed spectroscopic analysis. First, this review presents photometric and spectrophotometric researches on solar analogues and recalls the pionneering work on these stars by the late Johannes Hardorp. After a brief discussion on low and high resolution spectroscopic researches, a comparison is made between effective temperatures as obtained, directly, from detailed spectral analyses and those obtained, indirectly, from different photometric relations. An interesting point in this review is the discussion on the tantalilizing value of the of the Sun, and the presentation of a new reliable value of this index. A short restatement of the kinematic properties of the sample of solar analogues is also made. And, finally, the observational diagram, obtained with 99 of the initially presented 109 analogues, is compared to a theoretical diagram. This latter has been constructed with a grid of internal structure models for which, (very important for this investigation), the Sun was used as gauge. In analysing the position, with respect to the Sun, of each star we hoped to find a certain number of stars tightly neighbouring the Sun in mass, chemical composition and state of evolution. The surprising result is that the stars occupy in this HR Diagram a rather extended region around the Sun, many of them seem more evolved and older than the Sun, and only 4 of the evolved stars seem younger. The age of some stars in the sample is also discussed in terms of chromospheric activity and Li-content. Our conclusion is much the same as that contained in previous papers we have written on the subject: in spite of a much larger number of stars, we have not been able to nominate a single star of the sample for a “perfect good solar twin”. Another aim in beginning, 25 years ago, this search for solar analogues, was to have ready a bunch of stars resembling the Sun and analysed spectroscopically in detail, in order that, when planets hunters of solar type stars, finally would have found such a specimen, we would have been able to immediately compare the physical parameters of this star to those of the Sun. We have been lucky enough: one of the good solar analogues we present herewith, is 51 Pegasi (HD 217014) which, according to the very recent observations by Mayor and Queloz (1995), has a planet orbiting around it. And what is more: two other stars possessing planets: 47 Ursae Majoris (HD 95128) and 70 Virginis (HD 117176), have just been discovered by Marcy and Butler (187 Meeting of the AAS, January 1996). One of them, 47 Ursae Majoris, is also included in the list of photometric solar analogues. The other star, 70 Virginis, has only been included after the “Planets News”, because the colour index of this star is slightly higher than the prescribted limit of the selection, (, instead, 0.69). It would have been a pity to leave the third ” planet star out of the competition.  相似文献   

8.
9.
In this presentation we briefly describe the Sun through large number of illustrations and pictures of the Sun taken from early times to the present day space missions. The importance of the study of the Sun is emphasized as it is the nearest star which presents unparallelled views of surface details and numerous phenomena. Our Sun offers a unique celestial laboratory where a large variety of phenomena take place, ranging in temporal domain from a few milliseconds to several decades, in spatial domain from a few hundred kilometers to thousands of kilometers, and in the temperature domain from a few thousand degrees to several million degrees. Its mass motion ranges from thousandths to thousands of kilometers per second. Such an object provides us with a unique laboratory to study the state of matter in the Universe. The existing solar ground-based and space missions have already revealed several mysteries of the outer environment of our Sun and much more is going to come in the near future from planned new sophisticated ground-based solar telescopes and Space missions. The new technique of helioseismology has unravelled many secrets of the solar interior and has put the Standard Solar Model (SSM) on firm footing. The long-standing problem of solar neutrinos has been recently sorted out, and even the ‘back side’ view of the Sun can be seen using the technique of holographic helioseismology.  相似文献   

10.
The evolutionary behaviour of rotating solar models with different initial angular-momentum distributions has been investigated through the pre-Main-Sequence and Main-Sequence phases. The angular momentum was removed from the convective evelope of the solar models according to the Kawaler's model of magnetic stellar wind (Kawaler, 1988). The models show that (i) the surface rotational velocities of the solar mass stars are independent of initial angular momentum for ages greater than 108 years and (ii) it is not possible to explain the neutrino problem and the sufficient depletion of lithium in the Sun.  相似文献   

11.
Robert Howard 《Solar physics》1983,82(1-2):437-437
A series of digitized synoptic observations of solar magnetic and velocity fields has been carried out at the Mount Wilson Observatory since 1967. In recent studies (Howard and LaBonte, 1980; LaBonte and Howard, 1981), the existence of slow, large-scale torsional (toroidal) oscillations of the Sun has been demonstrated. Two modes have been identified. The first is a travelling wave, symmetric about the equator, with wave number 2 per hemisphere. The pattern-alternately slower and faster than the average rotation-starts at the poles and drifts to the equator in an interval of 22 years. At any one latitude on the Sun, the period of the oscillation is 11 years, and the amplitude is 3 m s-1. The magnetic flux emergence that is seen as the solar cycle occurs on average at the latitude of one shear zone of this oscillation. The amplitude of the shear is quite constant from the polar latitudes to the equator. The other mode of torsional oscillation, superposed on the first mode, is a wave number 1 per hemisphere pattern consisting of faster than average rotation at high latitudes around solar maximum and faster than average rotation at low latitudes near solar minimum. The amplitude of the effect is about 5 m s-1. For the first mode, the close relationship in latitude between the activity-related magnetic flux eruption and the torsional shear zone suggests strongly that there is a close connection between these motions and the cycle mechanism. It has been suggested (Yoshimura, 1981; Schüssler, 1981) that the effect is caused by a subsurface Lorentz force wave resulting from the dynamo action of magnetic flux ropes. But, this seems unlikely because of the high latitudes at which the shear wave is seen to originate and the constancy of the magnitude of the shear throughout the life time of the wave.  相似文献   

12.
Macrospicules have been observed in H and He i D3, on the disk and above the limb. In 1975, a rate of 1400 (A day)–1 is inferred, and the ratio of equatorial to polar rates 2. D3 intensities are a few × 10–3 of the disk center, and do not decrease in coronal holes. The ratio of H to D3 intensities is 10. The integral number of macrospicules with D3 intensity I 0 is proportional to I 0 –1.  相似文献   

13.
We compile a sample of Sun-like stars with accurate effective temperatures, metallicities and colours (from the ultraviolet to the near-infrared). A crucial improvement is that the effective temperature scale of the stars has recently been established as both accurate and precise through direct measurement of angular diameters obtained with stellar interferometers. We fit the colours as a function of effective temperature and metallicity, and derive colour estimates for the Sun in the Johnson–Cousins, Tycho, Strömgren, 2MASS and SDSS photometric systems. For  ( B − V )  , we favour the 'red' colour 0.64 versus the 'blue' colour 0.62 of other recent papers, but both values are consistent within the errors; we ascribe the difference to the selection of Sun-like stars versus interpolation of wider colour– T eff–metallicity relations.  相似文献   

14.
15.
The apparent yearly precession of the solar globe has been defined and described in some detail. Line-of-sight velocities less than ±18 m s-1 occur at the solar disk. The importance of the line-of-sight component of the precession in general, and as a test velocity in contemporary photospheric velocity research is pointed out.  相似文献   

16.
If the Sun loses angular momentum from its core, due to core contraction, into the solar wind at the observed rate, then an 0.7 day rotational period for the core of the Sun is required for temporal equilibrium. The rotational power released in the core contraction process can equal the observed magnetic energy released in the solar activity cycle if the Sun's core rotates with a period near 1.4 to 4 days. The rotational power released from a rotating object is , where is the torque on the object and is its angular velocity. Fitting this to the solar wind torque and core rotation rate provides an 0.5 to 5 day rotation period for the Sun's core. A gravitational Pannekoek-Rosseland electric field in the Sun makes the Ferraro theorem inapplicable in such a way that rather than a constant angular velocity with radius, an inverse square radial dependence occurs. This results in a two day rotational period for the region in the Sun where most of the angular momentum resides. The consistency of the above four methods suggests that the Sun's observed oblateness is due to a rapidly rotating solar core. The oblateness of the photosphere is estimated to be near 3.4×10–5.  相似文献   

17.
The interior of the Sun is not directly accessible to observations. Nonetheless, it is possible to infer the physical conditions inside the Sun with the help of structure equations governing its equilibrium and with the powerful observational tools provided by the neutrino fluxes and oscillation frequencies. The helioseismic data show that the internal constitution of the Sun can be adequately represented by a standard solar model. It turns out that a cooler solar core is not a viable solution for the measured deficit of neutrino fluxes, and the resolution of the solar neutrino puzzle should be sought in the realm of particle physics.  相似文献   

18.
Summary The Sun provides us with a unique astrophysics laboratory for exploring the fundamental processes of interaction between a turbulent, gravitationally stratified plasma and magnetic fields. Although the magnetic structures and their evolution can be observed in considerable detail through the use of the Zeeman effect in photospheric spectral lines, a major obstacle has been that all magnetic structures on the Sun, excluding sunspots, are smaller than what can be resolved by present-day instruments. This has led to the development of indirect, spectral techniques (combinations of two or more polarized spectral lines), which overcome the resolution obstacle and have revealed unexpected properties of the small-scale magnetic structures. Indirect empirical and theoretical estimates of the sizes of the flux elements indicate that they may be within reach of planned new telescopes, and that we are on the verge of a unified understanding of the diverse phenomena of solar and stellar activity.In the present review we describe the observational properties of the smallscale field structures (while indicating the diagnostic methods used), and relate these properties to the theoretical concepts of formation, equilibrium structure, and origin of the surface magnetic flux.On leave from Institute of Astronomy, ETH-Zentrum, CH-8092 Zürich, SwitzerlandThe National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

19.
S. T. Suess 《Solar physics》1971,18(1):172-175
Some recent observations of the Sun suggest a class of wave-like motions moving both eastward and westward at a uniform velocity with respect to the mean solar angular velocity. It is suggested that these may be hydromagnetic planetary waves. An estimate of the mean toroidal magnetic field is made, based on a theoretical treatment of such waves already in the literature, and a slight correction to the mean rate of rotation of the Sun is inferred.  相似文献   

20.
F. P. Keenan 《Solar physics》1990,126(2):311-317
Theoretical Niv emission line ratios, which incorporate several improvements over previous estimates, are presented for R 1 = I(923.2 Å)/I(765.1 Å) and R 2 = I(1718.6 Å)/I(1486.5 Å), which are electron density and temperature sensitive, respectively. A comparison of R 1 with observational data for several solar features obtained with the Harvard S-055 spectrometer on board Skylab reveals generally good agreement between theory and observation, except for the quiet Sun, which is probably due to the 923.2 Å line being blended with an Feiii transition in this instance. The observed value of R 2, determined from a quiet-Sun spectrum obtained by the S082-B spectrograph on board Skylab, implies an electron temperature in excellent agreement with that of maximum Niv fractional abundance in ionisation equilibrium, which provides observational support for the accuracy of the diagnostic calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号