首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aerial surveys were conducted in the lower Chesapeake Bay during 1986–1989 to estimate abundance and examine the distribution of the cownose ray,Rhinoptera bonasus, during its seasonal residence, May–October. Most of the survey effort was concentrated in the lower and mid-bay regions. Cownose rays appeared uniformly distributed across the bay during mid-summer, but were more abundant in the eastern portion of the bay during migration. North-south distribution varied and reflected the general seasonal migration pattern. Mean abundance increased stepwise monthly from June through September and declined dramatically in October with their emigration from the bay. Abundance estimates from individual surveys varied. The greatest range of individual survey abundance estimates occurred in September (0–3.7×107 cownose rays0 due to high variation in school size and abundance between surveys. Monthly mean cownose ray abundance ranged from 0 in May and November to an estimated maximum of 9.3×106 individuals in September. The magnitude of the population suggests that the cownose ray plays an important role in the trophic dynamics of the Chesapeake Bay ecosystem. The historical data were insufficient to determine whether the population has increased, but these surveys provided the baseline data which would allow future investigation of cownose ray population dynamics in lower Chesapeake Bay.  相似文献   

2.
Estuaries located in the northern Gulf of Mexico are expected to experience reduced river discharge due to increasing demand for freshwater and predicted periods of declining precipitation. Changes in freshwater and nutrient input might impact estuarine higher trophic level productivity through changes in phytoplankton quantity and quality. Phytoplankton biomass and composition were examined in Apalachicola Bay, Florida during two summers of contrasting river discharge. The <20 μm autotrophs were the main component (92?±?3 %; n?=?14) of phytoplankton biomass in lower (<25 psu) salinity waters. In these lower salinity waters containing higher dissolved inorganic nutrients, phycocyanin containing cyanobacteria made the greatest contribution to phytoplankton biomass (69?±?3 %; n?=?14) followed by <20 μm eukaryotes (19?±?1 %; n?=?14), and phycoerythrin containing cyanobacteria (4?±?1 %; n?=?14). In waters with salinity from 25 to 35 psu that were located within or in close proximity to the estuary, >20 μm diatoms were an increasingly (20 to 70 %) larger component of phytoplankton biomass. Lower summer river discharges that lead to an areal contraction of lower (5–25 psu) salinity waters composed of higher phytoplankton biomass dominated by small (<20 μm) autotrophs will lead to a concomitant areal expansion of higher (>25 psu) salinity waters composed of relatively lower phytoplankton biomass and a higher percent contribution by >20 μm diatoms. A reduction in summer river discharge that leads to such a change in quantity and quality of estuarine phytoplankton available will result in a reduction in estuarine zooplankton productivity and possibly the productivity of higher trophic levels.  相似文献   

3.
Coastal habitat use and residency of a coastal bay by juvenile Atlantic sharpnose sharks, Rhizoprionodon terraenovae, were examined by acoustic monitoring, gillnet sampling, and conventional tag–recapture. Acoustic monitoring data were used to define the residency and movement patterns of sharks within Crooked Island Sound, Florida. Over 3 years, sharks were monitored for periods of 1–37 days, with individuals regularly moving in and out of the study site. Individual sharks were continuously present within the study site for periods of 1–35 days. Patterns of movement could not be correlated with time of day. Home range sizes were typically small (average?=?1.29 km2) and did not vary on a yearly basis. Gillnet sampling revealed that juvenile Atlantic sharpnose sharks were present in all habitat types found within Crooked Island Sound, and peaks in abundance varied depending on month within a year. Although telemetry data showed that most individuals remained within the study site for short periods of time before emigrating, conventional tag–recapture data indicates some individuals return to Crooked Island Sound after extended absences (maximum length?=?1,352 days). Although conventional shark nursery theory suggests small sharks remain in shallow coastal waters to avoid predation, juvenile Atlantic sharpnose sharks frequently exited from protected areas and appear to move through deeper waters to adjacent coastal bays and estuaries. Given the high productivity exhibited by this species, the benefit gained through a nursery that reduces predation may be limited for this species.  相似文献   

4.
The Lower Hillsborough River, Florida is a short (16 km) riverine estuary which has a dam located at its upstream end. Salinity below the dam is influenced by freshwater that flows over or through the structure. Depending on location in the estuary, the response of salinity to changes in upstream freshwater inflows is normally not instantaneous, but lags behind the freshwater release. An analytical approach and a laterally averaged two-dimensional hydrodynamic model were used to examine the response time of salinity in the Lower Hillsborough River to changes in freshwater inflows from the upstream reservoir. A series of case studies were conducted using the model to determine how salinity in the river within one kilometer below the dam would respond to changes in freshwater inflows. The model results suggest that the time lag of salinity in the river depends on whether the upstream freshwater inflows are increasing or decreasing, as well as their magnitude. While the time lag for salinity is about six to eight days for decreasing inflows, it is much shorter for increasing inflows depending on the magnitude of the flow release.  相似文献   

5.
The seasonal occurrence of cownose rays (Rhinoptera bonasus) within North Carolina’s estuarine and coastal waters was examined from aerial surveys conducted during 2004–2006. Generalized linear models were used to assess the influence of several variables (month, year, habitat type, sea surface temperature, and turbidity) on predicted counts of cownose rays. The spatial distributions of rays were compared by season, and differences in group size were tested as a function of season and habitat. Cownose ray data associated with the North Carolina Division of Marine Fisheries (NCDMF) fishery independent gill net sampling program in Pamlico Sound was also examined as a function of season and year, and compared with aerial observations. Rays immigrated into the region in mid-spring (April), dispersed throughout the estuary in the summer (June–August), and emigrated by late autumn (November). Predicted counts were highest in the spring (April, May) and autumn (September–November) for coastal habitats and highest in the summer for estuarine habitats. Predicted counts were also higher in the coastal region than estuarine and higher when sea surface temperatures were above average. Comparison of group size by habitat type revealed substantially larger group sizes in the coastal habitat than the estuarine. In addition, for the estuary, spring surveys had larger group sizes than summer surveys; for the coastal habitat, autumn group sizes were significantly larger than spring or summer group sizes. The NCDMF gill net sampling surveys indicated similar trends in monthly migration patterns as well as increased ray abundance in 2008 and 2009 compared with 2003–2007. These results suggest that North Carolina’s waters serve as important habitat during the seasonal migration of cownose rays, as well as during the summer when the species may utilize the estuarine region as a nursery and/or for foraging.  相似文献   

6.
River discharge, tide, wind, topography and other factors all have great impacts on the saltwater intrusion of Modaomen Waterway (MW), a major outlet of the Pearl River Estuary. A coupled 1D–3D numerical model was applied in this study to account for the dynamic characteristics of saltwater intrusion in the MW, and the impacts of tide and river discharge on the length of saltwater intrusion were uncovered. Results are as the followings: (1) River discharge from upstream induces an obvious dilution of salinity along the MW, whereas tide can exert a positive force that pushes salt water landward. The effects of river discharge and tide on the length of saltwater intrusion can be well described by a regression function; (2) the saltwater intrusion along the MW is generally aggravated by increases in tidal range from the South China Sea. The length of saltwater intrusion usually reaches a maximum 2 or 3 days before spring tide, and the hourly length of saltwater intrusion along the MW usually slows the tidal process for approximately 4 h, which can provide important information that the pumping operation along the MW to store freshwater in the backup storages needs to be at least 3 days ahead of the spring tide so as to avoid serious impact from saltwater intrusion; (3) the length of saltwater intrusion generally decreases with increasing river discharge. In 2005, 2009 and 2010, the average river discharge from upstream was 2680, 2630 and 3160 m3/s, respectively, with corresponding average lengths of saltwater intrusion of 32.7, 42.3 and 21.4 km. The inverse correlation between the water flow and the length of saltwater intrusion may provide some guidance for operations to maintain enough upstream flow to dilute the salinity and therefore satisfy the domestic water supply.  相似文献   

7.
Progress is reported in relating upstream water management and freshwater flow to Florida Bay to a valuable commercial fishery for pink shrimp (Farfantepenaeus duorarum), which has major nursery grounds in Florida Bay. Changes in freshwater inflow are expected to affect salinity patterns in the bay, so the effect of salinity and temperature on the growth, survival, and subsequent recruitment and harvest of this ecologically and economically important species was examined with laboratory experiments and a simulation model. Experiments were conducted to determine the response of juvenile growth and survival to temperature (15°C to 33°C) and salinity (2‰ to 55‰), and results were used to refine an existing model. Results of these experiments indicated that juvenile pink shrimp have a broad salinity tolerance range at their optimal temperature, but the salinity tolerance range narrows with distance from the optimal temperature range, 20–30°C. Acclimation improved survival at extreme high salinity (55‰), but not at extremely low salinity (i.e., 5‰, 10‰). Growth rate increases with temperature until tolerance is exceeded beyond about 35°C. Growth is optimal in the mid-range of salinity (30‰) and decreases as salinity increases or decreases. Potential recruitment and harvests from regions of Florida bay were simulated based on local observed daily temperature and salinity. The simulations predict that potential harvests might differ among years, seasons, and regions of the bay solely on the basis of observed temperature and salinity. Regional differences in other characteristics, such as seagrass cover and tidal transport, may magnify regional differences in potential harvests. The model predicts higher catch rates in the September–December fishery, originating from the April and July settlement cohorts, than in the January–June fishery, originating from the October and January settlement cohorts. The observed density of juveniles in western Florida Bay during the same years simulated by the model was greater in the fall than the spring, supporting modeling results. The observed catch rate in the fishery, a rough index of abundance, was higher in the January–June fishery than the July–December fishery in most of the biological years from 1989–1990 through 1997–1998, contrary to modeling results and observed juvenile density in western Florida Bay.  相似文献   

8.
In shallow estuaries with strong river influence, the short residence time and pronounced gradients generate an environment for plankton that differs substantially in its dynamics from that of the open ocean, and the question arises “How is phytoplankton biomass affected?” This study assesses the small-scale spatial and temporal distribution of phytoplankton in Apalachicola Bay, a shallow bar-built estuary in the Florida Panhandle. Phytoplankton peaks were characterized to gain insights into the processes affecting spatial heterogeneity in biomass. Chlorophyll a (Chl a) distribution at 50-m spatial resolution was mapped using a flow-through sensor array, Dataflow©, operated from a boat that sampled four transects across the bay every 2 weeks for 16 months. Chl a peaks exceeding background concentrations had an average width of 1.3?±?0.7 km delineated by an average gradient of 3.0?±?6.0 μg Chl a L?1 km?1. Magnitude of E-W wind, velocity of N-S wind, tidal stage, and temperature affected peak characteristics. Phytoplankton contained in the peaks contributed 7.7?±?2.7% of the total integrated biomass observed along the transects during the study period. The river plume front was frequently a location of elevated Chl a, which shifted in response to river discharge. The results demonstrate that despite the shallow water column, river flushing, and strong wind and tidal mixing, distinct patchiness develops that should be taken into consideration in ecological studies and when assessing productivity of such ecosystems.  相似文献   

9.
The physicochemical qualities of a typical rural-based river were assessed over a 12-month period from August 2010 to July 2011 spanning the spring, summer, autumn and winter seasons. Water samples were collected from six sampling sites along Tyume River and analysed for total nitrogen, orthophosphate, biochemical oxygen demand (BOD), temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDS) and turbidity. BOD regimes did not differ significantly between seasons and between sampling points and ranged from 0.78 to 2.76 mg/L across seasons and sampling points, while temperature ranged significantly (P < 0.05) between 6 and 28 °C. Turbidity varied significantly (P < 0.05) from 6 to 281 nephelometric turbidity units while TDS (range 24–209 ppm) and conductivity (range 47.6–408 mg/L) also varied significantly (P < 0.05) across sampling points with a remarkable similarity in their trends. Orthophosphate concentrations varied from 0.06 to 2.72 mg/L across seasons and sampling points. Negative correlations were noted between temperature and the nutrients, DO and temperature (r = ?0.56), and TDS and DO (r = ?0.33). Positive correlations were noted between TDS and temperature (r = 0.41), EC and temperature (r = 0.15), and DO and pH (r = 0.55). All nutrients were positively correlated to each other. Most measured parameters were within prescribed safety guidelines. However, the general trend was that water quality tended to deteriorate as the river flows through settlements, moreso in rainy seasons.  相似文献   

10.
Prevalence (percent of oysters infected) ofPerkinsus marinus and infection intensity were measured in oysters from 49 sites in the Gulf of Mexico. Prevalence was less than 50% at only one site. Both prevalence and infection intensity were correlated with condition index, salinity, and a measure of local agricultural activity. The regional distribution ofP. marinus was patchy on spatial scales of 300 km or less and 1,500 km or more. Three regional foci of infection could be distinguished: the north central coast of Texas, central Louisiana west of the Mississippi River, and the southwestern coast of Florida. Lowest infection levels were recorded along the north central and northeastern Gulf, particularly east of the Mississippi River. The spatial distribution of infection varied with the salinity regime; however, other factors also explained part of the regional patterns observed. These included factors associated with man’s activities such as agricultural and industrial activity and the average annual temperature regime.  相似文献   

11.
Estuarine habitat occupied by Alligator mississippiensis, a primarily freshwater species, is spatially and temporally heterogeneous largely due to a salinity gradient that fluctuates. Using long-term night light survey data, we examined seasonal patterns in alligators’ habitat use by size classes in midstream and downstream estuary zones of Shark River, Everglades National Park, in southern Florida. We observed predominantly large-sized alligators (total length?≥?1.75 m); observations of alligators in the small size classes (0.5 m?≤?total length?<?1.25 m) were rare especially in the higher-salinity downstream zone. The density of alligators in the downstream zone was lower than that of the midstream zone during the dry season when salinity increases due to reduced precipitation. Conversely, the density of the large size alligators was higher in the downstream zone than in the midstream zone during the wet season, likely because of reduced salinity. We also found a significant declining trend over time in the number of alligators in the dry season, which coincides with the reported decline in alligator relative density in southern Florida freshwater wetlands. Our results indicated high adaptability of alligators to the fluctuating habitat conditions. Use of estuaries by alligators is likely driven in part by physiology and possibly by reproductive cycle, and our results supported their opportunistic use of estuary habitat and ontogenetic niche shifts.  相似文献   

12.
Sharm Obhur is a narrow coastal inlet about 10 km long. The maximum depth at the entrance is about 35 m, which decreases gradually towards the head. Nine field trips were conducted for hydrographic survey in the Sharm during April 2015–January 2016 covering pre-summer transition, summer, pre-winter transition and winter seasons. In each trip, eight stations along the central axis of the Sharm were occupied for the measurement of temperature and salinity. In addition, an Acoustic Doppler Current Profiler (ADCP) mooring was deployed near the entrance (at station 2) during 18 February–26April 2015. The vertical structures of temperature and salinity show two distinct layers—a relatively low saline surface layer and a high saline bottom layer. The thermohaline properties increase from the entrance towards the head in all the seasons except for a slight decrease in temperature during December. Near the head, the observed maximum temperature and salinity are 33.22 °C (August) and 40.36 psu (April), respectively, while the observed minimum temperature and salinity are 25.05 °C and 38.97 psu, respectively, during January. The water exchange between the Sharm and the Red Sea shows two-layer structure, with a surface inflow and a deep outflow which is typical of basins where evaporation exceeds precipitation. The pressure gradient generated by the increasing density towards the head pushes the relatively low saline surface water from the Red Sea to the Sharm with a gradient in surface salinity influenced by the evapouration and heat exchange. Near the head, it sinks and returns as a deep water flow. The estimated flushing time of the Sharm varies between 7 and 12 days with an average of 9.5 days.  相似文献   

13.
The pattern of local seismicity (110 events) and the source parameters of 26 local events (1.0?≤?Mw?≤?2.5) that occurred during May 2008 to April 2009 in Bilaspur region of Himachal Lesser Himalaya were determined. The digital records available from one station have been used to compute the source parameters and f max based on the Brune source model (1970) and a high-frequency diminution factor (Boore 1983) above f max. The epicentral distribution of events within 30 km of local network is broadly divided into three clusters of seismic activity: (1) a cluster located to the south of the Jamthal (JAMT) station and falls to the north of the Main Boundary Thrust (MBT) which seems to reflect the contemporary local seismicity of the segment of the MBT, (2) an elongated zone of local seismicity NE–SW trending, delineated NE of JAMT station that falls in the Lesser Himalaya between the MBT and the Main Central Thrust, and (3) NE–SW trending zone of local seismic activity located at about 10 km east of NHRI station and about 15 km northeast of NERI station and extending over a distance of about 20 km. Majority of events occur at shallow depths up to 20 km, and the maximum number of events occurs in the focal depth range between 10 and 15 km. The entire seismic activity is confined to the crust between 5 and 45 km. The average values of these source parameters range from 3.29?×?1017 to 3.73?×?1019?dyne-cm for seismic moment, 0.1 to 9.7 bars for stress drops, and 111.78 to 558.92 m for source radii. The average value of f max for these events varies from 7 to 18 Hz and seems to be source dependent.  相似文献   

14.
Freshwater pulses to subtropical estuaries often occur on time scales less than 1 week. In particular, introduction of low-level pulses are potentially important during the dry season (November–April) when freshwater is scarce. Determining potential ecological benefits of pulses requires an innovative method of data acquisition at the appropriate spatial and temporal scales. The South Florida Water Management District conducted a pilot study to assess changes in water column attributes with pulse releases to the Caloosahatchee River Estuary (CRE) from January to April 2012. An average inflow of 450 cfs was targeted for a series of freshwater pulses. This study utilized an onboard, flow-through system to record surface water temperature, salinity (S), pH, dissolved oxygen, turbidity, and in situ chlorophyll a (in situ CHL) at 5 s intervals along the 42-km length of the estuary. On each of seven research cruises, the vessel stopped at multiple stations to conduct vertical water column profiles. Salinity increased throughout the CRE as inflow decreased during the study period. Simple correlation and partial least squares regression were used to determine that the downstream locations of the S?=?10 isohaline and the maximum CHL concentration (in situ CHLmax) were positively related to inflow. While the in situ CHLmax was located 12–20 km downstream on five of the cruises, it was only a few kilometer from the estuary head on the first (1/12) and last (4/11) dates. It is possible that two circumstances related to freshwater inflow accounted for this pattern. First, water column stratification before January could have stimulated remineralization and primary production. Second, inflow ceased as water temperature increased to 26.0 °C by April to promote algal growth. Further study of the relationships among inflow, water level, flushing time, and CHL is warranted. Future efforts will examine the range of wet season discharge by incorporating a sensor for colored dissolved organic matter to fully connect inflow, salinity, submarine light, and phytoplankton attributes in the CRE.  相似文献   

15.
Frequency-domain electromagnetic sensing can be an effective tool for ascertaining subsurface water dynamics. In California, the paucity of available irrigation water, recurrence of drought and presence of indigenous salts within the geological parent materials affect crop health. Subsurface leaching variability analyses were performed using dual dipolar induction surveys and stochastic computations to determine salinity conditions conducive to plant growth. Soils in the study area had randomly variable salinity with elevated salt levels within the substratum. The salinity values were mostly above 300 mS m?1 and some areas exceeded the 1500 mS m?1 level. The leaching conditions across the fields varied generally from 5 to 50%. Both variables showed slightly positive skewness with minutely asymmetrical tailing. The salinity distribution had less peakedness than the leaching distribution. Albeit with spatially dependent variability and skewness, the distribution patterns had low errors. There was a strong and significant correlation (r?=?0.939 at P?<?0.05) between the observed and predicted conductivity data. The leaching variables exhibited directional dependence along vertical and horizontal gradients. Spatial increase in salinity within the substratum conformed to salt leaching and water percolation processes. All observed salinity values within the substratum exceeded salt tolerance threshold limits for major crops and favorable leaching conditions were observed at low salinity levels. Sustainability of agriculture in California is heavily dependent on adequate water use planning and our approach of leaching variability analyses can facilitate water management and crop production by assessing removal of superfluous salts from the soil substratum.  相似文献   

16.
The concentrations of dissolved boron have been measured during different seasons in three estuaries, the Tapi, Narmada and the Mandovi situated on the western coast of India, to investigate its geochemical behavior and inputs from the localized anthropogenic pressures of industrial effluents and sewage discharge. The measured boron concentrations in these estuaries (except the Tapi during non-monsoon) at salinity ≤0.1 fall in a narrow range?~?2–4 μmol/kg (average B?~?2.4?±?0.8 μmol/kg) within the reported wide range?~?0.1–18.6 μmol/kg for global rivers. The much higher estimate of boron concentration in the Tapi River during non-monsoon is attributed to its possible additional supply from the sewage and/or industrial effluents discharged along the river course. During monsoon, the rains seem to be a significant source of dissolved boron to all the three rivers. The distribution of dissolved boron in each estuary exhibits a conservative behavior during the seasons sampled suggestive of no measurable addition or removal of boron in the estuarine region. The orders of magnitude differences in boron concentration between the river waters and seawater, and the conservative behavior of dissolved boron indicate that its major contributor to the estuaries sampled is seawater.  相似文献   

17.
In this study, monthly and daily samplings were carried out at Klang, an eutrophic estuary, and at Port Dickson, an oligotrophic coastal water system. Escherichia coli concentration was measured via culture method, and the phylogenetic structure of E. coli population was via Clermont typing. Average E. coli concentration at Klang was higher than Port Dickson (t = 2.97, df = 10, p < 0.05), and daily sampling did not show any apparent temporal variation at both sites. At Klang, salinity was inversely correlated with coliform (R 2 = 0.216, df = 25, p < 0.05), suggesting that river flow was a mode of transport for coliform. Although E. coli concentration was higher at the eutrophic site, E. coli population structure at both Klang and Port Dickson were similar and showed neither long-term nor short-term variations. This study showed the predominance of commensal groups A and B1 in tropical coastal waters of Peninsular Malaysia.  相似文献   

18.
Understanding the natural spatial and temporal variability that exists within an ecosystem is a critical component of efforts to restore systems to their natural state. Analysis of benthic foraminifers and molluscs from modern monitoring sites within Florida Bay allows us to determine what environmental parameters control spatial and temporal variability of their assemblages. Faunal assemblages associated with specific environmental parameters, including salinity and substrate, serve as proxies for an interpretation of paleoecologic data. The faunal record preserved in two shallow (<2 m) cores in central Florida Bay (Russell Bank and Bob Allen Bank) provides a record of historical trends in environmental parameters for those sites. Analysis of these two cores has revealed two distinct patterns of salinity change at these sites: 1) a long-term trend of slightly increasing average salinity; and 2) a relatively rapid change to salinity fluctuations of greater frequency and amplitude, beginning around the turn of the century and becoming most pronounced after 1940. The degree of variability in substrate types at each locality limits interpretations of substrate trends to specific sites. A common sequence of change is present in the Russell Bank and Bob Allen Bank cores: from mixed grass and bare-sediment indicators at the bottom of the cores, to bare-sediment dwellers in the center, to a dominance of vegetative-cover indicators at the top of the cores. Changes in interpreted salinity patterns around the turn of the century are consistent with the timing of the construction of the Flagler Railroad from 1905 to 1912, and the Tamiami Trail and the canal and levee systems between 1915 and 1928. Beginning around 1940, the changes in the frequency and amplitude of salinity fluctuations may be related to changes in water management practices, meteorologic events (frequent hurricanes coupled with severe droughts in 1943 and 1944), or a combination of factors. The correspondence of these changes in Florida Bay with changes in the terrestrial Everglades suggests factors affecting the entire ecosystem are responsible for the salinity and substrate patterns seen in Florida Bay.  相似文献   

19.
The relative abundance of diatom species in different habitats can be used as a tool to infer prior environmental conditions and evaluate management decisions that influence habitat quality. Diatom distribution patterns were examined to characterize relationships between assemblage composition and environmental gradients in a subtropical estuarine watershed. We identified environmental correlates of diatom distribution patterns across the Charlotte Harbor, Florida, watershed; evaluated differences among three major river drainages; and determined how accurately local environmental conditions can be predicted using inference models based on diatom assemblages. Sampling locations ranged from freshwater to marine (0.1–37.2 ppt salinity) and spanned broad nutrient concentration gradients. Salinity was the predominant driver of difference among diatom assemblages across the watershed, but other environmental variables had stronger correlations with assemblages within the subregions of the three rivers and harbor. Eighteen indicator taxa were significantly affiliated with subregions. Relationships between diatom taxon distributions and salinity, distance from the harbor, total phosphorus (TP), and total nitrogen (TN) were evaluated to determine the utility of diatom assemblages to predict environmental values using a weighted averaging-regression approach. Diatom-based inferences of these variables were strong (salinity R 2?=?0.96; distance R 2?=?0.93; TN R 2?=?0.83; TP R 2?=?0.83). Diatom assemblages provide reliable estimates of environmental parameters on different spatial scales across the watershed. Because many coastal diatom taxa are ubiquitous, the diatom training sets provided here should enable diatom-based environmental reconstructions in subtropical estuaries that are being rapidly altered by land and water use changes and sea level rise.  相似文献   

20.
Oyster reefs provide structural habitat for resident crabs and fishes, most of which have planktonic larvae that are dependent upon transport/retention processes for successful settlement. High rates of freshwater inflow have the potential to disrupt these processes, creating spatial gaps between larval distribution and settlement habitat. To investigate whether inflow can impact subsequent recruitment to oyster reefs, densities of crab larvae and post-settlement juveniles and adults were compared in Estero Bay, Florida, over 22 months (2005–2006). Three species were selected for comparison: Petrolisthes armatus, Eurypanopeus depressus, and Rhithropanopeus harrisii. All are important members of oyster reef communities in Southwest Florida; all exhibit protracted spawning, with larvae present throughout the year; and each is distributed unevenly on reefs in different salinity regimes. Recruitment to oyster reefs was positively correlated with bay-wide larval supply at all five reefs examined. Species-specific larval connectivity to settlement sites was altered by inflow: where connectivity was enhanced by increased inflow, stock–recruitment curves were linear; where connectivity was reduced by high inflows, stock–recruitment curves were asymptotic at higher larval densities. Maximum recruit density varied by an order of magnitude among reefs. Although live oyster density was a good indicator of habitat quality in regard to crab density, it did not account for the high variability in recruit densities. Variation in recruit density at higher levels of larval supply may primarily be caused by inflow-induced variation in larval connectivity, creating an abiotic simulation of what has widely been regarded as density dependence in stock–recruitment curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号