首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
浙江省空气质量与大气自净能力的特征分析   总被引:1,自引:0,他引:1  
郁珍艳  李正泉  高大伟  王阔 《气象》2017,43(3):323-332
利用最新的高时空分辨率ERA-Interim探空和地面资料,计算分析了1979—2015年浙江省大气输送和自净能力的时空分布变化特征,结合环保局空气质量监测数据探讨了浙江省空气质量与大气自净能力的关系,结果表明:大气自净能力在春、夏季表现出沿海地区小,内陆地区大的分布;到了秋、冬季,沿海地区大气自净能力增大,内陆地区则减小;研究时段内全省平均大气自净能力有增大趋势。表征低层输送能力的10 m风速在秋、冬季最大,夏季最小,随时间略有减小,这是浙江省空气污染加剧的可能原因之一;10 m风速的分布基本呈从东部沿海地区往西部山区逐渐减小的变化趋势,秋、冬季风速略大,以偏北风为主。浙江省大部分地区冬季大气自净能力最差,盛行的偏北风又容易将北方污染物带下来,因此冬季是浙江省最易发生空气污染的时段。当风速较小,风向转为偏西北风时,污染物从北方输入并且积累,最易出现较严重的污染天气。中度及以上的空气污染主要发生在杭嘉湖、宁波、绍兴、金华这些经济发达的地区,沿海地区的舟山、温州、台州由于大气输送条件好发生站次很少。丽水和衢州山区海拔高,加之本地工业经济发展较弱,空气污染发生的频次较少。  相似文献   

2.
利用2008—2018年黑龙江省33个观测站的定时观测气象资料,按照国标《大气自净能力等级》(GB/T34299—2017),分析了黑龙江省大气自净能力时间、空间的变化特征,并以省会城市哈尔滨为例,结合逐日空气质量指数(AQI)数据,分析了大气自净能力与AQI的关系。结果表明:2008—2018年黑龙江省平均大气自净能力指数为12.6×104 km·a-1,整体呈上升趋势,2015年以来大气自净能力明显增强。春季大气自净能力最高,秋季次之,冬季最低;空间分布大致呈北低南高分布,包含二、三级两个级别,春季全省各地均处于第二级别,有利于对大气污染物的清除,冬季漠河处于第五级别,不利于对大气污染物的清除;哈尔滨市冬季AQI与大气自净力指数呈显著负相关,考虑了通风量和雨洗作用的大气自净能力与AQI关系密切,直接影响着空气质量状况。  相似文献   

3.
基于经验公式分析了天津市2013-2017年大气自净能力,以及PM2.5和PM10质量浓度的时空分布特征,并探讨了大气自净能力与大气颗粒物PM2.5质量浓度的关系,以期更好的理解大气环境对污染物浓度变化的影响。结果表明:时间变化上,天津市大气自净能力在午后13-14时最大,夜间最低,一年之中在采暖季(10月至翌年3月)要小于非采暖季,与之相反,天津市PM2.5和PM10质量浓度在采暖季均高于非采暖季。2017年相对于2013年,大气自净能力增加了5%,而PM2.5质量浓度下降了34%,PM10质量浓度则减少了47%。空间分布上,大气自净能力各季节均表现为沿海高于内陆,城区低于郊区的分布,天津市的PM2.5和PM10质量浓度的高值也主要集中在中南部地区,尤其是城区。大气自净能力与颗粒物浓度的分布在空间分布上有着一定的对应关系。分析表明,天津市大气自净能力日均值与PM2.5质量浓度日均值呈负相关,两者的相关系数为-0.34,在采暖季,相关系数有所提高。通过大气自净能力与PM2.5质量浓度变化的分析可知,重污染事件大多数发生在低大气自净能力时。  相似文献   

4.
利用山东22个基本(准)气象站小时气象观测资料,采用A值法计算了山东1961—2017年逐日大气自净能力指数(the atmospheric self-purification capacity index,ASPC),分析了其气候空间分布特征和时间演变规律,利用MK检验(Mann-Kendall检验)和MT检验(Moving-t,滑动t检验)方法对历年ASPC进行了突变检验。结果表明:平均ASPC气候倾向率减小趋势极显著(P<0.01),除章丘和威海外,其他各地ASPC减小趋势均极显著(P<0.01);春季各月ASPC较大,历年各月ASPC随时间明显减小;年和四季ASPC空间分布基本一致,半岛地区较大,鲁南等内陆地区相对较小;年和春、夏、秋、冬季ASPC突变年份分别出现在2003年和2006年、2003年、2003年、2005年。济南、青岛地区ASPC分别从1999年、1993年开始显著减小,低ASPC日数历年变化大致与ASPC变化相反;济南和青岛历年各月ASPC变化差异明显。  相似文献   

5.
利用郑州市主城区1961—2020年气象观测资料和2014—2018年空气质量监测数据,分析了郑州主城区大气自净能力指数的长期变化趋势与影响因子以及2014—2018年主城区大气自净能力与PM2.5的关系。结果表明:郑州主城区大气自净能力指数30 a气候均值为4.42 t·(d·km2)-1,春季大气自净能力最强,为5.20 t·(d·km2)-1;秋季大气自净能力最弱,为3.88 t·(d·km2)-1,不利于对大气污染物的清除。1961—2020年郑州主城区大气自净能力呈显著的减弱趋势,其中1969年最强为6.85 t·(d·km2)-1,2020年最弱为3.06 t·(d·km2)-1。影响因子中,1961—1980年混合层厚度与大气自净能力指数呈正相关;日平均风速≥2.5 m·s-1的日数和小风日数与大气自净能力分别呈...  相似文献   

6.
1951-2018年重庆主城区大气自净能力变化特征分析   总被引:1,自引:0,他引:1  
  相似文献   

7.
为更科学地量化大气对污染物的清除能力,使用WRF-NAQPMS模式对2017年12月进行模拟,对比分析影响大气清除能力的主要关键物理因子,修正A值法和大气自净容量算法的差异,进一步计算大气自净容量余量及各关键物理化学过程的贡献量。结果表明,边界层高度、风廓线、湿清除系数等3个关键物理参数较混合层高度、10 m高度风速、雨洗强度等更适用于量化清除过程;修正A值法和大气自净容量算法虽均能表征大气清除能力的强弱,但前者受目标城市面积影响较大,结果远高于大气自净容量算法;大气自净容量余量与细颗粒物(PM2.5)浓度变化趋势呈负相关,污染越重,大气自净容量亏空越多,其中平流扩散对大气自净容量贡献最大,化学转化过程次之,湿沉降等过程也不可忽视。  相似文献   

8.
利用HYSPLIT后向轨迹模式和2004年8月—2007年12月NCEP再分析气象资料,计算每天15:00抵达北京地区10、100和500m高度上的后向气流轨迹.对整个研究时段、采暖季和非采暖季期间的后向气流轨迹分别进行聚类分析,得到这3个时段到达北京地区的主要后向气流轨迹聚类.其中整个研究时段的后向气流轨迹分成3个聚类,采暖季和非采暖季的后向气流轨迹都分成5个聚类.结合各段时间中国科学院大气物理研究所观测的大气污染物体积分数资料,分析不同时段气流输送作用对北京主要大气污染物体积分数的影响.发现采暖季和非采暖季北京气体污染物体积分数高值主要集中在来自风速较小的西北方气流聚类.采暖季污染物体积分数低值主要出现在偏北方向风速较大的后向气流轨迹聚类.非采暖季污染物体积分数低值主要出现在偏北低速气流聚类和西北向高速气流轨迹聚类中.从各时段污染物最值分布情况可以看出:在风速较大的后向气流轨迹聚类影响下,北京的污染物体积分数较低;途经了较严重工业排放地带的后向气流轨迹聚类会使北京气体污染物体积分数显著增高.此外,虽然非采暖季的大气污染物分布与气流输送的影响基本符合,但各聚类污染物分布结果与气流输送作用的影响存在偏差.  相似文献   

9.
利用TrajStat软件和GDAS全球同化气象数据,对江西省赣江新区2011—2020年四季72 h气团后向轨迹进行聚类分析,并结合PM2.5和O3逐小时浓度数据,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)分析了2016年12月2—10日一次污染天气过程中大气污染物输送对赣江新区上空污染物浓度的贡献。结果表明,赣江新区2011—2020年四季气团后向轨迹中占比最大的均为短支气流,其中春季的短支气流来源于东侧,其他季节均来源于东北方向的安徽省,夏季和冬季的长支气流与季风的季节性变化一致。在2016年12月2—10日的污染天气过程中,赣江新区的PM2.5潜在源区主要分布于江西省北部、湖北省东南部,O3潜在源区主要分布于江西省北部、湖北省南部和湖南省东北小部分地区;同时天气形势显示,赣江新区处在槽后脊前,湖北省东南部存在偏强西北风,为大气污染物向赣江新区的输送创造了条件。  相似文献   

10.
基于华北区域80个国家地面气象观测站资料,采用大气自净能力指数(ASI)分析了 1961-2017年华北区域大气自净能力的气候分布特征及长期变率;用MK和MT法及Morlet小波对ASI进行了突变检验和能量谱分析;结合ASI的REOF空间载荷场分布特征,将华北区域进行分区,并研究了气象要素与华北区域及各分区的可能联系;...  相似文献   

11.
根据2000—2005年逐日4个时次的常规气象资料,采用国家标准GB/T 3840—91中规定的方法计算并分析了重庆主城区大气混合层厚度的频率分布、时间变化等基本特征;在此基础上,进一步以2005年为例分析了混合层厚度与空气污染指数的相关关系。结果表明:重庆市大气混合层厚度以0—800 m范围出现频率最高,多年平均值为428 m;混合层厚度的季节变化和日变化特征明显。与1980—1990年相比,2000—2005年期间年平均混合层厚度总体上有所增加。混合层厚度与空气污染指数的相关性分析显示,月平均混合层厚度和月平均API呈显著负相关(r=-0.72);分析表明,大气混合层厚度是影响城市空气质量的重要因素。  相似文献   

12.
2001-2011年西宁市空气质量特征及其与气象条件的关系   总被引:2,自引:0,他引:2  
利用2001-2011年西宁市城市空气质量日报资料,研究西宁市区域性污染特征,并结合气象资料对空气质量变化特征和影响因素进行了分析。结果表明:西宁市空气污染以可吸入颗粒物为主要污染物,空气质量状况以优和良居多;空气质量季节变化特征明显,春季空气质量最差,其次是冬季和秋季,夏季空气质量最好,冬春季空气质量不稳定,夏秋季空气质量较稳定; 空气质量年变化幅度大,供暖期API指数明显高于非供暖期;沙尘影响指数呈现下降趋势;从年际变化来看,空气质量已经有了明显改善;气象要素对大气污染物有制约关系,其中起主要作用气象因子为沙尘日数、降水量、相对湿度和气温; 可吸入颗粒物长距离输送是西宁市冬春季重污染现象的主要原因,来源于新疆、甘肃西北部、内蒙古中西部及本省西北部的柴达木盆地。  相似文献   

13.
利用2003—2009年杭州市逐日探空观测资料及杭州市环境监测站空气污染物浓度监测资料,对杭州市主城区低空温度层结特征及与3种主要空气污染物(SO2、NO2和PM10)浓度之间的关系进行了统计分析。结果表明:杭州市主城区低空大气温度层结全年以弱稳定为主,一年四季皆有逆温层存在;冬半年逆温发生频率高于夏半年,逆温层厚度冬季较厚、夏季较薄,逆温强度秋季最强、夏季最弱。通过计算污染物浓度与逆温特性的相关关系,发现污染物浓度与逆温层底高呈负相关,与逆温频率、厚度、强度呈正相关,由此说明杭州市主城区低空大气逆温层结状况是影响当地空气污染程度的主要因素之一。  相似文献   

14.
杭州市大气逆温特征及对空气污染物浓度的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
利用2003-2009年杭州市逐日探空观测资料及杭州市环境监测站空气污染物浓度监测资料,对杭州市主城区低空温度层结特征及与3种主要空气污染物(SO2、NO2和PM10)浓度之间的关系进行了统计分析。结果表明:杭州市主城区低空大气温度层结全年以弱稳定为主,一年四季皆有逆温层存在;冬半年逆温发生频率高于夏半年,逆温层厚度冬季较厚、夏季较薄,逆温强度秋季最强、夏季最弱。通过计算污染物浓度与逆温特性的相关关系,发现污染物浓度与逆温层底高呈负相关,与逆温频率、厚度、强度呈正相关,由此说明杭州市主城区低空大气逆温层结状况是影响该市空气污染程度的重要因素之一。  相似文献   

15.
基于2017-2019年河源市空气质量数据,分析了河源市首要污染物的年际变化特征,同时利用2019年东埔国控站点的首要污染物与气象要素进行了相关性分析,并以典型污染日为案例,分析了气象条件对污染过程的影响。结果表明:2017-2019年细颗粒物(PM2.5)污染日比重大幅度降低,以臭氧(O3)为首要污染物的污染日逐年增加,污染形式逐渐从颗粒物污染向臭氧污染发生转变。O3浓度与温度和湿度分别呈正负相关关系,高浓度O3主要出现在(20-30℃,25%-55%)阈值之间,在吹西北偏北风时O3浓度也较高。PM2.5和PM10与湿度也呈负相关关系,温度与湿度组合在(8-13℃,40%-55%)范围内时两者容易同时出现高值;在夏季PM2.5和PM10还与温度具有较强的正相关关系,这意味着高温情况下河源有出现颗粒物与O3复合污染的可能。河源市典型污染日具有风速较小局部扩散不利的特征,低温低湿条件下容易出现PM2.5污染,且主要受到区域的传输影响;而高温低湿条件下容易发生O3污染,且较高的前体物浓度容易加剧O3的本地污染。  相似文献   

16.
根据海南省环境科学研究院提供的海口站2013—2016年逐日空气污染数据,统计分析了海口市空气质量状况。综合应用高低空环流场、AQI指数结合MODIS卫星蓝光气溶胶厚度图,采用HYSPLIT轨迹聚类分析法、潜在源贡献因子法和浓度权重轨迹分析方法,重点分析了2013年12月海口空气污染的的主要输送路径,并探讨了首要污染物PM2.5和O3的潜在源区。结果表明:冬夏季风风向转换是海口发生空气污染的最主要气象原因,且首要污染物为PM2.5,其次是PM10和O3;海口市空气质量达标率在97.1%,总体较好,AQI指数呈逐年下降趋势;值得关注的是,O3呈逐年稳定上升趋势。大气污染物浓度受污染物排放和环流场共同影响,海口污染日对应的地面天气形势主要有3种类型,冷高压、变暖高压脊和台风外围下沉气流。此次污染过程中污染源是来自北方地区污染物长距离输送影响的结果。污染物个例分析中,首要污染物PM2.5潜在源区主要集中在湖南和江西的交界处、广东沿海地区、广西北部、江西和福建的交界处以及浙江中部地区,这些潜在源区气团沿着轨迹1、2和4通过长距离输送到海口。海口O3质量浓度贡献较大的区域主要集中在湖南和江西的交界处、粤西一带,主要沿着轨迹2将内陆地区的污染源输送到海口。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号