共查询到19条相似文献,搜索用时 109 毫秒
1.
2.
渠道抗冻胀垫层设计方法研究与数值模拟 总被引:2,自引:0,他引:2
基土换填是常用的抗冻胀措施。目前非冻胀性土缺乏科学标准的定义,换填厚度基本按照经验公式和工程类比确定,不尽科学合理。在对垫层抗冻胀机制的分析基础之上,根据层状土毛管水土水势理论给出了垫层材料的选择依据,结合热阻等效原理在考虑了衬砌结构允许位移的基础上给出了渠道垫层厚度的计算公式,并根据传统算法与该方法对山东打渔张北干渠弧形坡脚梯形渠道进行抗冻胀垫层设计;同时采用ANSYS有限元软件对渠道铺设垫层前后进行热力耦合数值模拟。研究表明,垫层通过改善水分场、温度场削弱了冻胀发生的因素;该垫层算法比传统算法合理、工程造价较低。数值分析表明,渠道冻胀量、冻胀力明显被削减,其中对阴坡的削减可达90%以上。 相似文献
3.
寒区隧道冻胀力随时间和隧道进深呈三维时空分布,为建立描述冻胀力时空效应的简化模型,首先以某寒区隧道温度场测试成果为基础,建立了三维温度场模型,通过Stephen公式得到围岩冻结深度变化规律,以围岩冻结深度为参数,结合冻融圈整体冻胀模型和风化层冻胀模型建立了新的冻胀模型。分析结果表明:围岩冻结深度受温度场影响呈三维时空分布,随隧道进深逐渐减小,随时间呈弦函数变化;考虑风化层和破碎层建立冻胀模型,当冻结深度小于风化层厚度时,冻胀力只由风化层产生,冻结深度大于风化层厚度时,冻胀力由风化层和扰动层叠加产生;冻胀力时空分布规律与围岩冻结深度变化规律一致。 相似文献
4.
5.
水布垭面板堆石坝垫层料渗透与渗透变形特性试验研究 总被引:3,自引:1,他引:3
水布垭水电站混凝土面板堆石坝高达233 m,垫层料的良好性能对于大坝的变形和渗流控制极为重要。文中介绍了基于混凝土面板堆石坝工程建设经验以及水布垭水电站可行性研究阶段试验成果确定的垫层功能要求和垫层料具体设计要求,垫层料的渗透性和渗透变形特性在设计要求中占有重要的位置,详细介绍了施工设计阶段针对垫层料进一步开展的系列渗透变形试验。水平试验取得的渗透系数、临界比降、破坏比降均有大于垂直试验值的趋势,水平试验模型更接近垫层实际填筑情况及其中的水流流态,所以水平试验成果更反映垫层的工程特性;随着垫层料级配和密度的变化,其渗透系数变化范围较大,总体上满足10-4~10-2 cm/s渗透系数的要求。但是,粗级配和低密度试样的渗透系数超越设计要求的上限值;临界比降和破坏比降随着垫层料级配和密度的变化没有呈现明显的规律变化,试样内部结构欠稳定。研究成果进一步说明,垫层料级配和填筑密度控制非常重要,垫层的渗透稳定性有赖于过渡区提供有效的反滤保护作用。 相似文献
6.
7.
通过对新疆兵团垦区硫酸盐渍土路基的野外试槽试验测得的地温、盐冻胀变形量等试验数据进行整理,并运用SPSS软件进行多元线性回归分析,探讨了硫酸盐渍土路基的盐冻胀变形规律、盐冻胀变形量的影响因素及其计算方法,研究结果表明:①在一个冻融循环周期内,路基中各测点的地温-变形量曲线可以分成3个阶段,不同阶段的盐冻胀变化规律不同;②在降温、升温过程中,硫酸盐渍土路基盐冻胀变形量的影响因素不同,相应的计算公式也不同;③在一个冻融循环周期内,路基中各测点的盐冻胀变形量的最大值均出现在升温初期,因此,建议采用升温过程中盐冻胀变形量的计算公式计算路基的最大盐冻胀变形量。 相似文献
8.
严寒地区高速铁路路基冻胀变形监测分析 总被引:12,自引:8,他引:12
穿越我国东北地区的哈尔滨至大连高速铁路(哈大高铁)是世界上首条投入运营的新建严寒地区高速铁路,路基冻胀防治采用了换填材料、防水等综合措施. 为评价冻胀防治效果及路基工程运营状况,通过对哈大高铁开通后首个冻融期(2012-2013年度)路基全线9 641个凸台观测点水准人工监测数据综合分析,研究路基冻胀变形发生、发展和变化规律. 结果表明:哈大高铁路基冻胀变形包括冻胀快速发展期、冻胀稳定发展期和融化回落期3个阶段,路基普遍发生冻胀但变形处于可控状态;路基的冻胀变形以基床表层冻胀为主,且其程度与路基结构有关;整体上全线过渡段冻胀轻微,路堤次之,路堑和底座板接缝处较为严重. 建议后续冻胀整治应以减少路基表水下渗、控制基床表层冻胀变形为重点;类似工程设计中,应增加以桥代路段落,将路基表层改性为不冻胀整体结构. 相似文献
9.
国内外沉管隧道先铺基础多采用碎石作为垫层材料,目前尚无采用卵石的先例。卵石和碎石在表面光滑度、排列接触方式、颗粒间天然空隙率等物理特性的差异性将影响其力学性能表现。通过物理模型试验和数值模拟计算,对卵石和碎石垫层的力学变形特性进行对比分析。研究表明:(1)两种材料垫层压缩曲线均呈两阶段反弯曲线变化趋势,相同荷载条件下卵石垫层压缩量较碎石高,总体割线模量较碎石低约30%(。2)垫层厚度由0.8 m变为1 m时,卵石垫层割线模量增加了13.0%,碎石垫层割线模量增加了2.2%;卵石垫层力学变形性能对垫层厚度的变化较碎石垫层更敏感。(3)预压荷载由52.5kPa增加到84kPa时,卵石垫层割线模量增加了23.5%,碎石垫层割线模量增加了7.6%;预压荷载越大,卵石垫层能更早达到拐点从而表现出更稳定的力学性能;增加预压荷载对卵石垫层整体力学变形性能的改善较碎石垫层更明显。(4)随沟宽增大,垫层模量在前期再压缩阶段出现模量提高,而在全加载期内总体表现为模量降低;在全荷载范围内卵石垫层对垄沟尺寸变化的敏感度低于碎石垫层。(5)碎石垫层的整体力学性能优于卵石垫层,但两种垫层材料对结构沉降和受力状态的... 相似文献
10.
11.
开放系统下土体冻胀引起土工结构变形致使其服役特性面临严峻挑战。基于土体冻胀非线性弹性力学模型, 推导了计算半空间无限体中土单元在自重下冻胀的数学表达式, 建立了水平场地土冻胀模拟方法, 提出了考虑上部压载效应与位移边界变化的场地表面隆起位移及土体应力与应变的计算方法。在此基础上, 利用开放系统下粉质黏土逐级降温冻胀室内试验, 验证了冻胀引起地表隆起变形预测解析方法的可靠性。经验证, 该变形预测解析方法可应用于寒区场地冻胀量的评估, 进而为开放系统下土工结构物变形预测提供科学参考。 相似文献
12.
兰新客运专线浩门区间路基温度、水分及冻胀变形特征 总被引:3,自引:0,他引:3
粗细颗粒混合填料的微冻胀严重影响着寒冷地区高速铁路的安全运营.基于对兰新客运专线浩门区间运营期4个路基断面不同深度的温度、水分及冻胀变形现场监测,分析了冻结期该铁路路基在不同深度下的温度、水分及冻胀随季节变化特征.结果表明:越接近地表,对外界环境温度变化的敏感性越高,温度传递随时间的滞后性呈指数递减规律,深度超过3 m时全年无负温.寒季2.7 m厚的路基最大冻胀量约2.1 cm,其中,0~0.5 m处寒季最低温度介于-10.3~-15.6℃,暖季及冻结初期含水量相对较高有15%左右,其冻胀率约4.86 mm·m-1,故级配碎石在低温含水量高情况下能有效减弱冻胀.冻胀率最大值(14.34 mm·m-1)发生在0.5~1.5 m之间的普通AB组填料层,寒季最低温度介于-7.2~-12.4℃,暖季及冻结初期含水量介于10%~15%.1.5~2.7 m之间的填料层冻胀率约为1.94 mm·m-1,寒季最低气温-3.2~0.4℃,暖季及冻结初期含水量介于12.5%~15%.路基填料细颗粒(粒径小于0.25 mm)含量越高,冻胀率越大,建议将细颗粒料控制在15%以内. 相似文献
13.
开展含缺陷空间(孔隙、裂隙)岩体内部冻胀力发生机制及演化规律分析,是岩体冻胀损伤、断裂评价研究的基础。孔隙、裂隙冻胀损伤发生空间尺度存在显著差异,其冻胀损伤机制及冻胀力演化分析也不尽相同,可将孔隙介质冻胀损伤理论归纳为四类:①基于水冰相变体胀的冻胀损伤模型,包括体积膨胀理论、静水压理论等;②基于水热迁移的冻胀损伤理论,包括分凝冰理论、全过程冻胀理论等;③基于孔隙水相变热力学平衡分析的损伤理论,包括毛细管理论、结晶压理论等;④孔隙介质力学理论。裂隙介质冻胀损伤一般认为发生在宏观空间尺度上,着重关注裂隙的冻胀扩展过程。其损伤理论可分为体积膨胀理论(包括水压致裂理论)和分凝冰理论,而裂隙介质冻胀损伤对微观过程(如未冻水迁移、岩/冰界面受力特性等)关注度有待深入。藉此分别讨论上述冻胀损伤理论原理、适用条件及局限性,并对不同缺陷形态(孔隙、裂隙)引起的冻胀力演化机制差异性进行简要分析。 相似文献
14.
15.
隧道冻胀力是引起隧道冻害的主要原因之一,隧道冻胀力主要由围岩不均匀冻胀引起。裂隙的存在会对岩体不均匀冻胀产生进一步影响,因此推导了岩体不均匀冻胀系数kθ的计算公式,并获得岩体不均匀冻胀系数kθ的相关规律。(1)岩体不均匀冻胀系数随裂隙与冻结方向的夹角θ的增大而增大。(2)温度梯度增加,岩体的不均匀冻胀系数kθ增加,岩体的不均匀冻胀性增强。(3)裂隙率对岩体不均匀冻胀的影响需要考虑到裂隙与温度梯度夹角q,当裂隙与温度梯度的夹角q较小时,岩体不均匀冻胀系数kθ随裂隙率的增加而减小;当裂隙与温度梯度的夹角θ较大时,岩体不均匀冻胀系数kθ随裂隙率的增加而增大。(4)裂隙对岩体不均匀冻胀的影响程度与岩体的岩性有关,裂隙对孔隙率小的岩体影响较大。根据推导的裂隙岩体不均匀冻胀系数计算公式,计算得到了不同岩性不同级别含裂隙围岩的不均匀冻胀系数范围,从而,在寒区隧道设计中可以更精确地计算隧道围岩作用于衬砌上的冻胀力,对寒区隧道工程的设计具有重要作用,对路基、边坡等寒区工程冻胀力的研究也可起到推动... 相似文献
16.
粉砂土反复冻胀融沉特性试验研究 总被引:3,自引:0,他引:3
针对深季节冻土区的特殊环境,通过室内试验研究了粉砂土在不同初始含水率、干密度、荷载、冻融次数条件下的反复冻胀、融沉特性。研究结果表明:粉砂土的冻结温度为-1.03 °C;其冻胀融沉变形随冻融次数的增加呈现波浪式起伏变化,并最终趋于稳定状态;经历多次冻融后,干密度较大试样整体表现为膨胀,干密度较小试样整体表现为压密;上部荷载在抑制冻胀的同时加大了试样的整体融沉变形,却降低了每次冻融的冻胀率和融沉系数;存在一个最优初始含水率,该含水率条件下,试样经历多次冻融后的高度不发生变化;由于外界水源的补给,冻融后试样内部含水率均大于初始含水率;干密度和顶端荷载的增大均有效地抑制了外界水源的补给;4次冻融循环后,粉砂土的冻胀率、融沉系数均逐渐趋于稳定。 相似文献
17.
饱和正冻土水分迁移及冻胀模型研究 总被引:6,自引:0,他引:6
正冻土在温度梯度大的情况下,冻结锋面快速移动,孔隙水变成冰,造成原位体积膨胀;而通常在天然条件下,温度梯度都不大,水从未冻区向冻结区迁移,在某一个位置引起冰的累积,形成分凝冰。由于此诱发的冻胀要比原位冻胀大很多,因此,建立一个能够模拟土体水分迁移及分凝冰形成过程的冻胀模型尤其重要。基于第2冻胀理论,建立了饱和土体冻胀模型。在模型中,假设冻结缘中单位时间内水分迁移速度为常数,以计算冻结缘内水压力,再根据克拉方程得到冰压力。根据冰压力的大小作为分凝冰形成判据,研究中假设新的分凝冰形成以后,上一层分凝冰停止生长。模型把水分迁移和冻胀速率当作基本的未知量,模拟了与可天然土体冻胀类似的底部无压补水和顶部加压的冻胀情况。通过数值模拟与试验结果进行对比,初步验证模型的可靠性,其研究结果为实际寒区工程的冻胀预测提供参考。 相似文献
18.
基于弹性地基梁理论的冻胀作用下管道应力分析 总被引:2,自引:1,他引:2
穿越冻土区的埋地管线在遭遇冻土差异性冻胀时,管道会发生翘曲变形,管线将面临很大的安全隐患。为此,基于弹性地基梁理论建立冻胀条件下的管-土相互作用模型,分析了管道在冻胀及其影响因素作用下的应力分布规律,探讨了冻土地基特性(弹性模量、泊松比及地基系数)与温度的关系,对比了不同地基系数、冻胀量、管径、壁厚、温差以及上覆土厚度等特定条件下的管道应力峰值状况。计算结果表明:管道在过渡段与冻胀段及非冻胀段交界处有最大应力值,各类影响因素对管道交界处的应力影响最显著;地基系数的值越大,差异性冻胀量越大,管径越大,温差越大,管道交界处应力峰值也越大;管壁越厚,在管道交界处的应力峰值越小;管道上覆土层越厚,管道受冻胀作用弯曲应力越小,即加深上覆土层可降低管道由于冻胀抬升所产生的应力,可减缓管道变形。 相似文献