首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of distribution tails is a fundamental research in statistical frequency analysis relevant to many research fields, such as insurance, hydrological events, earthquake, etc. Here, we describe and investigate the effect and feasibility of the high-order L-moment (LH-moment) method for estimating heavy-tail conditions by fitting a four parameter kappa distribution. Details of parameter estimation using LH-moments for the four parameter kappa distribution (K4D) are described and formulated. Monte-Carlo simulation is performed to illustrate the performance of the LH-moment method in terms of heavy-tail quantiles over all quantiles using K4D and non K4D samples, respectively. The result suggests that the method is either useful (when the method of L-moment estimation fails to give a feasible solution) or as effective as the L-moment approach in handling data following K4D. Applications to the annual maximum flood and sea level data are presented.  相似文献   

2.
3.
This article discusses the method of higher-order L-moment (LH-moment) estimation for the Wakeby distribution (WAD), and describes and formulates details of parameter estimation using LH-moments for WAD. Monte Carlo simulation is performed, to illustrate the performance of the LH-moment method via heavy-tail quantiles (over all quantiles) using WAD. The LH-moment method proves as useful and effective as the L-moment approach in handling data that follow WAD, and it is then applied to annual maximum flood and wave height data.  相似文献   

4.
Two well-known methods for estimating statistical distributions in hydrology are the Method of Moments (MOMs) and the method of probability weighted moments (PWM). This paper is concerned with the case where a part of the sample is censored. One situation where this might occur is when systematic data (e.g. from gauges) are combined with historical data, since the latter are often only reported if they exceed a high threshold. For this problem, three previously derived estimators are the “B17B” estimator, which is a direct modification of MOM to allow for partial censoring; the “partial PWM estimator”, which similarly modifies PWM; and the “expected moments algorithm” estimator, which improves on B17B by replacing a sample adjustment of the censored-data moments with a population adjustment. The present paper proposes a similar modification to the PWM estimator, resulting in the “expected probability weighted moments (EPWM)” estimator. Simulation comparisons of these four estimators and also the maximum likelihood estimator show that the EPWM method is at least competitive with the other four and in many cases the best of the five estimators.  相似文献   

5.
Abstract

Flood frequency analysis (FFA) is essential for water resources management. Long flow records improve the precision of estimated quantiles; however, in some cases, sample size in one location is not sufficient to achieve a reliable estimate of the statistical parameters and thus, regional FFA is commonly used to decrease the uncertainty in the prediction. In this paper, the bias of several commonly used parameter estimators, including L-moment, probability weighted moment and maximum likelihood estimation, applied to the general extreme value (GEV) distribution is evaluated using a Monte Carlo simulation. Two bias compensation approaches: compensation based on the shape parameter, and compensation using three GEV parameters, are proposed based on the analysis and the models are then applied to streamflow records in southern Alberta. Compensation efficiency varies among estimators and between compensation approaches. The results overall suggest that compensation of the bias due to the estimator and short sample size would significantly improve the accuracy of the quantile estimation. In addition, at-site FFA is able to provide reliable estimation based on short data, when accounting for the bias in the estimator appropriately.
Editor D. Koutsoyiannis; Associate editor Sheng Yue  相似文献   

6.
The principle of maximum entropy (POME) was employed to derive a new method of parameter estimation for the 3-parameter log-logistic distribution (LLD3). Monte Carlo simulated data were used to evaluate this method and compare it with the methods of moments (MOM), probability weighted moments (PWM), and maximum likelihood estimation (MLE). Simulation results showed that POME's performance was superior in predicting quantiles of large recurrence intervals when population skew was greater than or equal to 2.0. In all other cases, POME's performance was comparable to other methods.  相似文献   

7.
The principle of maximum entropy (POME) was employed to derive a new method of parameter estimation for the 3-parameter log-logistic distribution (LLD3). Monte Carlo simulated data were used to evaluate this method and compare it with the methods of moments (MOM), probability weighted moments (PWM), and maximum likelihood estimation (MLE). Simulation results showed that POME's performance was superior in predicting quantiles of large recurrence intervals when population skew was greater than or equal to 2.0. In all other cases, POME's performance was comparable to other methods.  相似文献   

8.
Univariate and bivariate Gamma distributions are among the most widely used distributions in hydrological statistical modeling and applications. This article presents the construction of a new bivariate Gamma distribution which is generated from the functional scale parameter. The utilization of the proposed bivariate Gamma distribution for drought modeling is described by deriving the exact distribution of the inter-arrival time and the proportion of drought along with their moments, assuming that both the lengths of drought duration (X) and non-drought duration (Y) follow this bivariate Gamma distribution. The model parameters of this distribution are estimated by maximum likelihood method and an objective Bayesian analysis using Jeffreys prior and Markov Chain Monte Carlo method. These methods are applied to a real drought dataset from the State of Colorado, USA.  相似文献   

9.
鄱阳湖流域水文极值演变特征、成因与影响   总被引:4,自引:3,他引:1  
张强  孙鹏  江涛 《湖泊科学》2011,23(3):445-453
选用11种概率分布函数,系统分析了鄱阳湖流域"五河"的6个水文站年最大径流量与连续3d、7d最大平均日流量,函数参数以及拟合优度分别由线性矩法与柯尔莫哥洛夫-斯米尔诺夫方法检验,选出最适合该区流量极值分布函数.在此基础上,对引起该流域水文极值变化的原因及其影响作了有益的探讨.结果表明:(1)韦克比分布是用于研究都阳湖流...  相似文献   

10.
The principle of maximum entropy (POME) was employed to derive a new method of parameter estimation for the 2-parameter generalized Pareto (GP2) distribution. Monte Carlo simulated data were used to evaluate this method and compare it with the methods of moments (MOM), probability weighted moments (PWM), and maximum likelihood estimation (MLE). The parameter estimates yielded by POME were comparable or better within certain ranges of sample size and coefficient of variation.  相似文献   

11.
ABSTRACT

The extreme value type III distribution was derived by using the principle of maximum entropy. The derivation required only two constraints to be determined from data, and yielded a procedure for estimation of distribution parameters. This method of parameter estimation was comparable to the methods of moments (MOM) and maximum likelihood estimation (MLE) for the low flow data used.  相似文献   

12.
We consider the problem of computing the most probable location of a target based on radar measurements of the subsurface. Our algorithm makes use of the maximum likelihood estimator (MLE), which represents a correlation between the measured data and synthetic data generated for the object of interest at different locations. Previous studies assume a plane-wave acquisition geometry and target object(s) embedded in a uniform background. In this paper, a generalization of the MLE method is presented which is valid for discrete point sources (and receivers) and a 2D model (i.e. a 2.5D acquisition geometry). Within this formulation the treatment of a non-uniform background model is also possible. We concentrate on geotechnical ground investigations and assume that the characteristic dimensions of the target object are in the range 1–2λ, (λ being the wavelength). The potential of the method is demonstrated employing cross-hole radar data acquired in a controlled field experiment. The MLE result is also compared with the image obtained employing a full reconstruction method such as diffraction tomography.  相似文献   

13.
The principle of maximum entropy (POME) was used to derive the Pearson type (PT) III distribution. The POME yielded the minimally prejudiced PT III distribution by maximizing the entropy subject to two appropriate constraints which were the mean and the mean of the logarithm of real values about a constant >0. This provided a unique method for parameter estimation. Historical flood data were used to evaluate this method and compare it with the methods of moments and maximum likelihood estimation.  相似文献   

14.
Abstract

Flood frequency analysis can be made by using two types of flood peak series, i.e. the annual maximum (AM) and peaks-over-threshold (POT) series. This study presents a comparison of the results of both methods for data from the Litija 1 gauging station on the Sava River in Slovenia. Six commonly used distribution functions and three different parameter estimation techniques were considered in the AM analyses. The results showed a better performance for the method of L-moments (ML) when compared with the conventional moments and maximum likelihood estimation. The combination of the ML and the log-Pearson type 3 distribution gave the best results of all the considered AM cases. The POT method gave better results than the AM method. The binomial distribution did not offer any noticeable improvement over the Poisson distribution for modelling the annual number of exceedences above the threshold.
Editor D. Koutsoyiannis

Citation Bezak, N., Brilly, M., and ?raj, M., 2014. Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrological Sciences Journal, 59 (5), 959–977.  相似文献   

15.
This study aims to model the joint probability distribution of drought duration, severity and inter-arrival time using a trivariate Plackett copula. The drought duration and inter-arrival time each follow the Weibull distribution and the drought severity follows the gamma distribution. Parameters of these univariate distributions are estimated using the method of moments (MOM), maximum likelihood method (MLM), probability weighted moments (PWM), and a genetic algorithm (GA); whereas parameters of the bivariate and trivariate Plackett copulas are estimated using the log-pseudolikelihood function method (LPLF) and GA. Streamflow data from three gaging stations, Zhuangtou, Taian and Tianyang, located in the Wei River basin, China, are employed to test the trivariate Plackett copula. The results show that the Plackett copula is capable of yielding bivariate and trivariate probability distributions of correlated drought variables.  相似文献   

16.
Goodness-of-fit tests for the spatial spectral density   总被引:1,自引:1,他引:0  
Detection and modeling the spatial correlation is an important issue in spatial data analysis. We extend in this work two different goodness-of-fit testing techniques for the spatial spectral density. The first approach is based on a smoothed version of the ratio between the periodogram and a parametric estimator of the spectral density. The second one is a generalized likelihood ratio test statistic, based on the log-periodogram representation as the response variable in a regression model. As a particular case, we provide tests for independence. Asymptotic normal distribution of both statistics is obtained, under the null hypothesis. For the application in practice, a resampling procedure for calibrating these tests is also given. The performance of the method is checked by a simulation study. Application to real data is also provided.  相似文献   

17.
Computer-intensive methods are used to examine the fit of the log logistic distribution to annual maxima of Irish rainfall. The characteristics of the L-moment solutions are examined by using the conventional bootstrap on the data and by random sampling within the ellipse of concentration of the parameter estimates. A statistical method of examining uncertainty is provided by the maximum product of spacings solution. Factors derived from random division of an interval are proposed for estimation of short-duration falls for which no data are available.  相似文献   

18.
A new method of parameter estimation in data scarce regions is valuable for bivariate hydrological extreme frequency analysis. This paper proposes a new method of parameter estimation (maximum entropy estimation, MEE) for both Gumbel and Gumbel–Hougaard copula in situations when insufficient data are available. MEE requires only the lower and upper bounds of two hydrological variables. To test our new method, two experiments to model the joint distribution of the maximum daily precipitation at two pairs of stations on the tributaries of Heihe and Jinghe River, respectively, were performed and compared with the method of moments, correlation index estimation, and maximum likelihood estimation, which require a large amount of data. Both experiments show that for the Ye Niugou and Qilian stations, the performance of MEE is nearly identical to those of the conventional methods. For the Xifeng and Huanxian stations, MEE can capture information indicating that the maximum daily precipitation at the Xifeng and Huanxian stations has an upper tail dependence, whereas the results generated by correlation index estimation and maximum likelihood estimation are unreasonable. Moreover, MEE is proved to be generally reliable and robust by many simulations under three different situations. The Gumbel–Hougaard copula with MEE can also be applied to the bivariate frequency analysis of other extreme events in data‐scarce regions.  相似文献   

19.
The log-Gumbel distribution is one of the extreme value distributions which has been widely used in flood frequency analysis. This distribution has been examined in this paper regarding quantile estimation and confidence intervals of quantiles. Specific estimation algorithms based on the methods of moments (MOM), probability weighted moments (PWM) and maximum likelihood (ML) are presented. The applicability of the estimation procedures and comparison among the methods have been illustrated based on an application example considering the flood data of the St. Mary's River.  相似文献   

20.
Extremes of stream flow and precipitation are commonly modeled by heavytailed distributions. While scrutinizing annual flow maxima or the peaks over threshold, the largest sample elements are quite often suspected to be low quality data, outliers or values corresponding to much longer return periods than the observation period. Since the interest is primarily in the estimation of the right tail (in the case of floods or heavy rainfalls), sensitivity of upper quantiles to largest elements of a series constitutes a problem of special concern. This study investigated the sensitivity problem using the log-Gumbel distribution by generating samples of different sizes (n) and different values of the coefficient of variation by Monte Carlo experiments. Parameters of the log-Gumbel distribution were estimated by the probability weighted moments (PWMs) method, method of moments (MOMs) and maximum likelihood method (MLM), both for complete samples and the samples deprived of their largest elements. In the latter case, the distribution censored by the non-exceedance probability threshold, F T , was considered. Using F T instead of the censored threshold T creates possibility of controlling estimator property. The effect of the F T value on the performance of the quantile estimates was then examined. It is shown that right censoring of data need not reduce an accuracy of large quantile estimates if the method of PWMs or MOMs is employed. Moreover allowing bias of estimates one can get the gain in variance and in mean square error of large quantiles even if ML method is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号