首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supports crushing accident occasionally occurs in the protected seam exploitation of deep multi-seam coal mining structure and results in adverse effect to the production. To prevent its recurrence in a newly developed working field, a 3D numerical extraction model was built based on the geologic and mining conditions of Jining coal mine to evolve the changes, state and characteristics of the reconstructed vertical and lateral stress in rock interlayer after protective seam exploitation. Stress release and increase zones of this mining structure were separated. Mining-induced localized stress concentration and the interlayer rock failure behavior were explored. The action of concentrated stress on the hydraulic supports in protected seam was discussed upon the major stress redistribution. Using the infinitesimal strain method, a mechanical model was created to further explore, from the vertical and lateral directions, the cause and mechanism of localized stress concentration and rock failure behavior in rock interlayer. The field investigation was finally performed to verify the numerical and mechanical results, and the essential control measures were proposed to prevent this accident. Key findings of this study bring some new insights into the deep multi-seam coal extraction and help to promote a more reliable underground mining.  相似文献   

2.
The no. 11 coal seam in the deep area of Hancheng mining area is mining in recent years, which is threatened by the water inrush from the Ordovician limestone aquifer. Coal-floor water inrush is governed by the water abundance of coal-floor aquifer, the water-resisting performance of coal-floor aquitard, and the pathway connecting the water source and the working face. To make an accuracy risk assessment of water inrush from the no. 11 coal seam floor, a GIS-based vulnerability index method (VIM) is adopted for its superior comprehensive consideration of more controlling factors, powerful spatial analysis, and intuitively display functions. This study firstly established an index system including the water pressure of the coal-floor aquifer, the unit water inflow, the thickness, the core recovery percentage, the thickness ratio of brittle rocks to ductile rocks, the thickness of effective aquitard, and the accumulated length of faults and folds, of which the former six indexes governed the water abundance of the coal-floor aquifer which was combined with the last two factors to determine the risk of coal-floor water inrush. Secondly, the thematic map of each controlling factor is established by GIS using the geological prospecting data, and the weight of each factor is determined by the analytic hierarchy process (AHP) after consulting the expert review panel. At last, a vulnerability index is obtained and used to assess the risk of coal-floor water inrush of the no. 11 coal seam. The risk of water inrush of the no. 11 coal seam of the study area was ranked to three zones: the southeastern shallow area in red color is the dangerous zone, the wide northwestern area in green color is the safe zone, and the transition area in yellow color is the moderate-risk zone. Compared with the actual water-inrush incidents, the risk assessment result was verified to achieve an accuracy of 82.35%, which is proved to be a dependable reference for the prevention and controlling of coal-floor water inrush of the no. 11 coal seam in Hancheng mining area.  相似文献   

3.
为研究深部强冲击厚煤层开采上、下解放层的卸压效果。采用数值模拟方法,分析不开采解放层,开采下解放层,开采上、下解放层条件下,被解放层的应力变化情况及应力变化规律,计算开采下解放层后的合理卸压角,确定解放层平巷位置。模拟结果表明开采上、下解放层后,应力明显减小,但仍存在高应力区,易发生冲击地压,必要条件下应采用其它辅助卸压方式。证明了煤壁前方应力增加区域一般在煤壁前方8~25m。该研究为工作面开采设计提供理论指导,对防治冲击地压具有一定的现实意义。  相似文献   

4.
兖州矿区侏罗系红层水文地质特征研究   总被引:1,自引:0,他引:1  
侏罗系红层水是兖州矿区主要水害之一。为防治红层水害,对兖州矿区红层的物质组成、红层孔隙微观特征及分形特征、红层的渗透性、岩石力学特征、采动条件下覆岩破坏高度数值模拟、采动条件下红层裂隙的发育规律与渗透特征、红层突水判别模式及突水危险性分区等进行了研究,建立了红层突水判别模式,得到兖州矿区红层突水危险性分区图,对类似条件矿区的水害防治具有一定的参考价值。   相似文献   

5.
Ascending mining method is a widely used method in China for coal mine safety. To determine whether ascending mining method can eliminate or reduce the outburst risk or not in Xinzyao Mine, China, a numerical model was built by FLAC3D software to investigate the fracture evolution and accumulation and dissipation law of energy during the process of ascending mining. And a dual water blocking system was used to verify the fracture evolution obtained from the numerical model. The results show that FLAC3D model can predict the fracture evolution in overburden with a reasonable error. The height of water-conducting fractured zone of no. 14-3 coal seam is about 82.5 m, and it increases by 27 % after no. 12-2 coal seam is mined. The largest energy accumulated in no. 12-2 coal seam is about 32.5 kJ/m3 when mining it directly. The energy accumulated in no. 12-2 coal seam decreases by more than 40 % when ascending mining method is adopted. Ascending mining method can effectively eliminate the outburst risk of the upper coal seam. The research is helpful for the determination of ascending mining method and the further study of the prevention mechanism of rock burst.  相似文献   

6.
通过对唐口煤矿地应力、3上煤层及顶板岩层冲击地压测试结果分析,认为3上煤层属强冲击倾向性煤层,3上煤层顶板属弱冲击倾向性岩层;在采深1000m条件下,随着地应力的增大,煤、岩层的冲击倾向性将会增大。因3上煤层为易碎煤,厚度较大,顶板弹性能易突然全部释放,形成冲击地压;3上煤顶板主要为中砂岩、细砂岩及泥岩,质地坚硬,在煤层开采过程中,煤壁附近出易现高应力集中带,在顶板中聚集的弹性能在自重力和采掘干扰下会突然释放,形成冲击地压。在生产过程中采取钻屑法、沿采煤工作面轨道顺槽安装顶板离层报警系统、合理开拓避免应力集中和叠加、对煤层进行注水,降低煤体弹性和强度、提高支护结构的承载能力等一系列措施,较好地预防了冲击地压的发生。  相似文献   

7.
多煤层开采条件下煤层覆岩破坏具有独特的特征,影响矿井生产布置。以陕北某矿为例,以该矿地质采矿条件为基础,采用相似材料模拟实验与数值模拟相结合的方法,通过建立模拟模型,开展了双煤层开采对覆岩的破坏影响研究。结果显示:留设不同宽度的煤柱,采用相似材料模拟和数值模拟2种方法得到的煤层覆岩垮落带高度、裂隙带高度都基本一致;在双煤层开采时,留设的煤柱宽度越大,两个煤层的叠置区域就越小,煤层开采对覆岩的破坏程度就越小。在工作面布置时,建议增大两个煤层的开采距离,并尽量增加煤柱宽度,以减缓覆岩移动破坏范围和破坏程度。研究成果为类似双煤层开采工作面的设计及覆岩破坏控制提供技术支撑。   相似文献   

8.
Intensive strata behaviors are generated when the No. 8707 working face of the 8# coal seam in a coal mine is advanced by way of the pillars left over of the upper part of 7# close distance coal seam. The theoretical analysis, numerical simulation and filed measurement were utilized to obtain the rule of the stress change when the 8707 working face of the 8# coal seam passes the pillars left over of the 7# coal seam. Meanwhile, a pressure-relief mining (PRM) technology was put forward. According to the research results, when the 8707 working face in the 8# coal seam was advanced to the position that was 20 m in front of the pillar left over, the abutment pressure reached the maximum for 26 MPa and the stress concentration factor was 3.25, which was likely to give rise to the rock burst. With the advance of the working face, the abutment pressure was reduced slowly. As the 8707 working face advanced 15 m away the pillar left over, the transfixed shear failure region of 45° was found in the bedrocks of the upper and lower coal seams, which was readily to give rise to the shear rupture, leading to the rock burst. Based on the aforementioned research, this research carried out the PRM by applying the hydraulic fracturing technology on the coal roof and pillar, which can ensure the safety and efficient mining of working faces.  相似文献   

9.
From the viewpoint of safety in underground coal mining, the most suitable mining panel is the one with minimum geological structures, the right machinery, and equipment selection, trained employee, and proficient stope management. Since the ground parameters are uncontrollable and inherent uncertainties exist, a high percent of risk will usually accompany the underground coal mining activities. The main purpose of this study is to present a geological–geotechnical risk assessment model for identification of high risk-prone areas in underground coal mines using an integrated GIS-geostatistics system. Tabas as the first mechanized and largest underground coal mine in Iran was selected as a case study in this study. Gas content of coal seam, Coal Mine Roof Rating (CMRR), initial in situ stress state, fault throw, and orientation were selected as hazard/risk factors. For estimating the amount of coal seam gas content, CMRR and initial in situ stress in unsampled areas and providing the prediction maps, geostatistics module in ArcGIS was used. Rock engineering system–interaction matrix method was used for attribute weight assignment. Next, the attribute layers were weighted, rated, and overlaid to create a final map of geohazards risk. The analysis results of final risk map indicate that about 45% of under study area is prone to high to very high geohazards risk. Comparison of the results with experiences obtained during the early part of the mine and mined-out panels showed generally good agreement with promising ideas. This highlights the potential application of the GIS-based approach for hazards detection and geohazards risk assessment in underground coal mines.  相似文献   

10.
为避免山西临汾胜利煤矿10号煤层采动过程中受上覆6号煤层采空区透水的威胁,利用板壳理论、断裂力学理论分别建立导水裂隙带高度和底板破裂深度的力学模型,计算10号煤层Ⅰ—Ⅵ区开采过程中导水裂隙带高度分别为46.77 m、48.86 m、56.05 m、56.14 m、56.33 m和55.20 m,6号煤层Ⅰ—Ⅳ区的破裂带影响深度分别为1.57 m、1.14 m、1.85 m和1.26 m。通过构建上覆煤层采空区积水危险性类型的划分准则,对10号煤层采动过程中受到上覆6号煤层采空区积水的危险性进行判定分析,结果表明:6号煤层Ⅰ—Ⅳ区对10号煤层的积水危险性类型均为突水型,会对10号煤开采过程产生安全威胁;6号煤层的不可采区域对10号煤层Ⅴ区和Ⅵ区的影响类型为原岩渗透型,对10号煤层Ⅴ区和Ⅵ区的回采不会构成危险性。   相似文献   

11.
为研究深部煤层开采底板破坏形态,提出考虑围岩应变软化和采空区接触的FLAC3D有限差分数值方法,以河北开平煤田林西矿2023工作面底板实测导水裂隙带为工程背景,结合朗肯土压力理论定性分析,研究深部煤层底板破坏特征。结果表明:采用应变软化本构关系代替常用摩尔–库伦本构关系能够对围岩塑性破坏后的力学状态更准确表述;采用“应变软化–空–弹性”模型转变的方法,达到模拟采空区顶板垮落后应力传递的效果,弥补了以往煤层开采模拟中采空区垮落后顶底板不接触的固有缺陷;通过采空区顶底板接触与否条件下应力、位移的对比,发现采空区是否接触对数值结果影响巨大,突出考虑采空区接触的必要性;根据模拟结果中塑性剪切应变率的变化,实现了底板滑移面的三维显示,形态为斜向采空区的半包围面状结构;结合朗肯土压力理论将底板塑性区与主动区、过渡区和被动区对应,3个区破坏形式分别为剪切破坏、剪切破坏、拉张与剪切的交互破坏。提出的考虑围岩应变软化及采空区接触的FLAC3D数值方法对煤层开采模拟实现了优化,并可为其他大变形后需考虑接触的工程模拟提供参考。   相似文献   

12.
近距离上保护层开采瓦斯运移规律数值分析   总被引:10,自引:1,他引:9  
采动裂隙是瓦斯运移的通道,搞清瓦斯运移规律是瓦斯治理的前提。在考虑岩石动态破坏过程和含瓦斯煤岩渗流-应力-损伤耦合的基础上,结合平煤五矿实际地质条件和开采工艺,建立了数值计算模型,应用RFPA-Gas程序模拟了近距离上保护层采动顶底板岩层变形破坏、裂隙演化规律与瓦斯运移规律。模拟结果较好地再现了保护层开采过程中煤岩层应力变化、顶底板损伤及裂隙演化过程,得到了上覆岩层移动的“上三带”(冒落带、裂隙带和弯曲下沉带)和底板变形的“下两带”(底板变形破坏带和弹塑性变形带)。得到了被保护层瓦斯流量分布、瓦斯压力分布和透气系数的变化规律,卸压煤层瓦斯透气性增大了2 500倍,得到了煤壁下方压缩区和膨胀区之间的张剪瓦斯渗流通道,并将保护层底板压缩区和膨胀区的瓦斯渗流特征提炼出来:压缩区对应的是渗流减速减量区、膨胀区由卸压膨胀陡变区和卸压膨胀平稳区组成,分别对应着渗流急剧增速增量区和渗流平稳增量区。指出卸压膨胀陡变区是瓦斯突出危险区,为近距离保护层开采瓦斯治理指明了方向。实践表明,瓦斯治理效果显著。  相似文献   

13.
为研究榆神矿区最上可采煤层赋存及开采对萨拉乌苏组含水层危害程度,依次分析了榆神矿区最上可采煤层赋存特征、最上可采煤层与上覆主要含(隔)水层空间分布规律及组合类型,基于基载比和采高的最上可采煤层覆岩导水裂隙带发育规律、煤层开采对萨拉乌苏组含水层危害程度,将榆神矿区开采受危害程度分为4类:自然保水区、保水采煤区(影响大区和影响小区)、采煤失水区及采煤无水区。结果表明:受构造及剥蚀作用影响,榆神矿区最上可采煤层及上覆基岩呈差异剥蚀,煤露头线从SE向NW呈阶梯状分布,最上可采煤层上覆基岩由NW到SE方向逐渐变薄。榆神矿区西部(三、四期)最上可采煤层开采后对萨拉乌苏组含水层危害程度小或没影响;榆神矿区东部(一、二期)最上可采煤层开采后对萨拉乌苏组含水层危害程度大。   相似文献   

14.

Strip mining in mines is one of the main mining methods to control surface subsidence and protect the ecological environment. In recent years, strip mining has induced frequent rock burst accidents due to the increase in mining intensity and mining depth. Based on two typical deep strip mining accidents, the characteristics of the changes in spatial structure of the overlying strata caused by strip mining are studied, and the influencing factors of the occurrence of strip mining rock burst are analyzed. A support pressure calculation model is proposed, and estimated and verified in a mine after an analysis of the change law of the overlying strata structure in strip mining and research on the distribution and evolution law of support pressure. Based the above research, a risk evaluation model of the strip mining face is proposed based on the possibility index method, the 4203 working face of a mine is evaluated. Compared with the numerical simulation results, this method is well consistent with the theoretical calculation model. It can be seen that this method has strong practicability and is of great significance for studying the rock burst characteristics of coal seams in strip mining and evaluating the risk of rock burst of coal seams.

  相似文献   

15.
以淮北朱庄矿Ⅲ628综采工作面底板灰岩水突水淹面事故为案例,分析了6煤赋存水文地质条件,建立了6煤底板"四带"划分模型并进行数值分析。研究认为,造成突水的主要原因是由工作面内小断层形成的原始损伤带在采动动压作用下演变成导水通道,从而造成突水事故。通过本案例的分析,"四带理论"较好地解释了本次突水机理,初步认为在淮北矿区6煤底板存在"四带","四带理论"对类似矿井底板灰岩水防治具有重要指导意义。  相似文献   

16.
古构造应力场数值模拟及危险性预测研究   总被引:1,自引:0,他引:1  
在精确确定构造序列与构造格架的基础上,探索出一套从建立构造模型、确定边界条件、选取岩体力学参数与危险性判断准则、计算古构造应力值、预测危险区与安全岛的基本思路与方法。采用有限元法,建立了矿区平面应力与三维构造模型,从加载方式和加载大小两方面模拟历史时期作用于成庄煤矿上的古构造应力。根据地表岩体和深部煤层中的节理,计算其内摩擦角和岩体抵抗变形破坏的能力,获得了古构造应力作用下地表表层、3#煤层的临界区、危险区与安全区。结合研究区节理、断层、褶皱、陷落柱等构造形迹特征,对危险性分区进行综合预测。预测结果揭示,山西晋城成庄煤矿区存在先南北向、后东西向的两期大的古构造运动,即先东西向加载60 MPa,再南北向加载110~180 MPa,可能的危险区分东、西两带,该结论对煤层岩体应力集中带和瓦斯突出区的预测具有重要的意义。  相似文献   

17.
Formation of fractured zones in overburden due to longwall mining   总被引:6,自引:0,他引:6  
The fractured zones caused by mining were studied in the overburden of the Torezko-Snezhnyanskaya area, Ukraine, through the change in natural gas emission from these zones during longwall coal excavation. Zones of interconnected fractures and separate horizontal fractures were studied with vertical wells drilled from the ground surface down to active underground workings. The maximum heights of the zone of interconnected fractures and separate horizontal fractures may reach 19–41 and 53–92 times the thickness of the coal seam respectively. It was found that the ratio between the maximum height of the zone of interconnected fractures and the thickness of the extracted coal seam increases with the increasing number of rock layer interfaces and decreases with the increasing stiffness of immediate roof. It is shown that the growth of the zone of interconnected fractures occurred during 17–39 days at an average rate of 0.94–1.97 m day?1 and it was accompanied by increasing methane emission from overburden. Observation shows that the formation of separate horizontal fractures began only 11–49.5 days after the height of the zone of interconnected fractures reached its maximum value. Formation of separate horizontal fractures in overburden over the longwall excavation occurred as a stepped process from lower to upper sandstone–sandy shale layer interfaces in the direction of the ground surface.  相似文献   

18.
Steep coal seam mining activities will frequently occur during the next few decades in China. In this study, both experimental and numerical methods are employed to investigate the coal drawing from thick steep seam with longwall top coal caving mining. A series of analyses is performed to investigate the features of the drawing body, the distribution of top coal recovery ratio and the shape of the rock flow under steep conditions. The results indicate that the drawing body of top coal develops prior to upper side of the panel face obviously, and the top coal in the central part of the panel has a higher recovery ratio than that in the lower and upper parts in steep coal seam with caving mining method. The flow paths of the fragmented top coal are nearly straight lines moving towards the drawing window, and the fastest path maintains a constant angle with the plumb line. The spatial shape of the rock flow indicates “bidirectional asymmetry,” which results from the presence of the shield beam and dip angle of the coal seam; thus, this is the root cause of the appearance of the drawing body’s prior development towards the upper side of the panel. The field observation data indicates the same distribution of top coal recovery as that in the physical experiment and numerical simulation. Furthermore, suggested measurements are proposed to improve top coal recovery in steep seam mining based on the engineering practice of Dayuan coal mine.  相似文献   

19.
在对淮南煤田朱集井田钻孔资料分析的基础上,结合侵入岩化学成分测试、X-射线衍射分析以及薄片显微镜下鉴定等结果,得出研究区侵入岩主要以岩床的形式侵入煤系地层,岩性以闪长岩、花岗岩为主,岩床层数多为单层;受NWW—NW向断裂构造带控制,侵入岩体的分布范围呈现从西向东逐渐扩大,在垂向上,从上部煤层到下部煤层,受岩浆影响的程度有明显加大的态势。由于岩浆侵入煤层,严重破坏了煤层的结构和稳定性,同时,降低了煤的工业利用价值,加大了开采难度。  相似文献   

20.
随着煤矿开采强度的不断增大,矿井逐渐向深部转移,冲击地压灾害日益严峻。而深部冲击地压矿井往往存在一层或多层坚硬厚岩层,这些坚硬顶板厚度较大,整体性强,突然断裂时会释放大量弹性能,易引发冲击地压事故,严重制约矿井安全生产。以陕西彬长矿区孟村矿为例,针对矿区内煤层埋藏深、普遍存在多种坚硬厚岩层的特殊情况,提出针对性治理措施:对顶板上方0~80 m范围内厚度超过10 m的坚硬厚岩层进行破断、弱化处理,对煤层上方0~30 m范围的低位岩层采取顶板深孔爆破预裂措施,对煤层上方30~60 m范围内的中位坚硬岩层采取顶板定向长钻孔水力压裂措施,对煤层60 m以上高位坚硬岩层采取地面水平井分段压裂措施;使高、中、低位顶板产生的裂缝在垂向上实现贯穿,将顶板“切割”成相对规则的“块状”结构,使上覆岩层应力由“硬传递”转化为“软传递”;并结合煤层大直径孔卸压、煤层爆破等煤层卸压措施,形成了区域与局部相结合、煤层与岩层全覆盖的“井上下”立体防治模式。工程实践证明:采用“井上下”立体防治模式后,工作面103 J以上微震事件降低88%,周期来压强度降低23%,来压持续时间缩短61%,防冲效果良好。该技术模式的成功...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号