首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Anatolian accretionary collage between Afro-Arabia and Eurasia is currently subject to two tectonic regimes. Ongoing slip of Arabia relative to Africa along the Dead Sea Fault Zone in the east is extruding crustal blocks away from the indenter by a combination of strike-slip and rotation. This zone of compression gives way to an extensional province in western Turkey, which also includes the eastern sector of Aegean Province. Although it is now well established that rotational deformation throughout Anatolia is distributed and differential, the sizes of the blocks involved are poorly understood. As a contribution towards evaluating this issue in central-east Turkey, we report palaeomagnetic study of the mid-Miocene Kepezda? and Yamada? volcanic complexes in central-south Anatolia (38–39.5°N, 37.5–39°E). A distributed sample through the Yamada? complex identifies eruption during an interval of multiple geomagnetic field reversals (40 normal, 36 reversed, 8 intermediate sites) with a selected mean defined by 63 sites of D/I = 335.4/51.1° (α95 = 4.4°). The smaller Kepezda? complex (8 reversed, 4 normal and 1 intermediate site) yields a comparable mean direction from 12 sites of 338.7/49.8° (α95 = 14.1°). In the context of a range of radiometric age evidence, two thick normal polarity zones within the Yamada? succession probably correlate with zones C5ACn and C5ADn of the Geomagnetic Polarity Time Scale and imply that the bulk of the volcanic activity took place between ∼15 and 13.5 Ma. Comparison of the palaeomagnetic results with the adjoining major plate indenters shows that the Yamada? complex has rotated CCW by 29.3 ± 5.2° relative to Eurasia; the much smaller dataset from the Kepezda? complex indicates a comparable CCW rotation of 26.0 ± 11.8° with respect to Eurasia. The Arabian Indenter has also been rotating CCW since mid Miocene times, and the block incorporating these two volcanic complexes north of the East Anatolian Fault Zone (EAFZ) is determined to have rotated 18.2 ± 6.0° CCW relative to the northern perimeter of Arabia. Comparison with data to the north identifies quasi-uniform rotation across a ∼200 km wide block extending from the Central Anatolian Fault Zone in the northwest to close to the East Anatolian transform fault zone in the south east. Although absence of suitable younger rocks does not permit the timing of this rotation to be determined in the study area, analogies with results from the Sivas Basin suggest that it is young, and followed establishment of the major transform faults. Rotation has evidently taken place around bounding arcuate faults and accompanied westward expulsion as the accretionary collage north of Arabia has been subject to ongoing post-collisional indentation.  相似文献   

2.
Increased source strength, streamer length and dense spatial coverage of seismic reflection profiles of the SEISMARMARA Leg 1 allow to image the deep structure of the marine North Marmara Trough (NMT) on the strike-slip North Anatolian Fault (NAF) west of the destructive Izmit 1999 earthquake. A reflective lower crust and the Moho boundary are detected. They appear upwarped on an E-W profile from the southern Central Basin eastwards, towards more internal parts of the deformed region. Thinning of the upper crust could use a detachment suggested from an imaged dipping intracrustal reflector that would allow upper crustal material to be dragged from beneath it and above the lower crust, accounting for the extensional component but also southwest motion of the southern margin of the NMT. Sections across the eastern half of the NMT, crossing the Cinarcik and Imrali basins, reveal several faults that are active reaching into the basement and have varying strike and proportions of normal and strike-slip displacement. They might be viewed as petals of a large scale negative flower-structure that spreads over a width of 30 km at surface and is rooted deeper in the lithosphere. Under the Central Basin a very thick sediment infill is revealed and its extensional bounding faults are active and imaged as much as 8 km apart down to 6 km depth. We interpret them as two deep-rooted faults encompassing a foundering basement block, rather than being merely pulled-apart from a jog in a strike-slip above a décollement. The deep-basin lengthening would account for only a modest part of the proposed 60 km finite motion since 4 Myr along the same direction oblique to the NMT that sidesteps the shear motion from its two ends. Thus differential motion occurred much beyond the deep basins, like subsidence involving the NMT bounding faults and the intracrustal detachments. The complex partitioned motion localized on active faults with diverse natures and orientations is suggested to represent the overburden deformation induced from horizontal plane simple shear occurring in depth at lithospheric scale, and in front of the North Anatolian Fault when it propagated through the region.  相似文献   

3.
In order to investigate crustal structure beneath the eastern Marmara region, a seismic refraction survey was conducted across the North Anatolian Fault (NAF) zone in north west Turkey. Two reversed profiles across two strands of the NAF zone were recorded in the Armutlu Highland where a tectonically active region was formed by different continents. We used land explosions in boreholes and quarry blasts as seismic sources. A reliable crustal velocity and depth model is obtained from the inversion of first arrival travel times. The velocity-depth model will improve the positioning of the earthquake activities in this active portion of the NAF. A high velocity anomaly (5.6–5.8 km s−1) in the central highland of Armutlu block and the low velocity (4.90 km s−1) pattern north of Iznik Lake are the two dominant features. The crustal thickness is about 26 ± 2 km in the north and increases to about 32 ± 2 km beneath the central Armutlu block in the south. P-wave velocities are about 3.95 km s−1 to 4.70 km s−1 for the depth range between about 1 km and 5 km in the upper crust. The eastern Marmara region has different units of upper crust with velocities varying with depth to almost 8 km. The high upper crust velocities are associated with Armutlu metamorphic rocks, while the low velocity anomalies are due to unconsolidated sedimentary sequences. The western side of Armutlu block has complex tectonics and is well known for geothermal sources. If these sources are continuous throughout the portions of the crust, it may be associated with a granitic intrusion and deformation along the NAF zone. That is, the geothermal sources associated with the low velocity may be due to the occurrence of widespread shear heating, even shear melting. The presence of shear melting may indicate the presence of crustal fluid imposed by two blocks of the NAF system.  相似文献   

4.
In Turkey, neotectonic activity originated from the collision of the Arabian and Anatolian land masses during the Middle Miocene. As a result of the collision, westward escape of the Anatolian block introduced E-W compression in Western Turkey which began to be relieved by N-S extension. The North Anatolian Fault (NAF) is the major active strike-slip fault that was formed under the neotectonic regime. The rates of the motion along this fault estimated by several authors are in the range of 0.4–2.9 cm/a according to kinematic data. In Turkey, the first studies of crustal movements by geodetic methods were started in the west section of the NAF in 1972. So far, individual activities and studies coordinated by multidisciplinary projects have been realized in this region. The results obtained from available geodetic data indicate the motion of the Anatolian block relative to Eurasia.  相似文献   

5.
The collision between the Arabian and Eurasian plates in eastern Turkey causes the Anatolian block to move westward. The North Anatolian Fault (NAF) is a major strike-slip fault that forms the northern boundary of the Anatolian block, and the Erzincan Basin is the largest sedimentary basin on the NAF. In the last century, two large earthquakes have ruptured the NAF within the Erzincan Basin and caused major damage (M s = 8.0 in 1939 and M s = 6.8 in 1992). The seismic hazard in Erzincan from future earthquakes on the NAF is significant because the unconsolidated sedimentary basin can amplify the ground motion during an earthquake. The amount of amplification depends on the thickness and geometry of the basin. Geophysical constraints can be used to image basin depth and predict the amount of seismic amplification. In this study, the basin geometry and fault zone structure were investigated using broadband magnetotelluric (MT) data collected on two profiles crossing the Erzincan Basin. A total of 24 broadband MT stations were acquired with 1–2 km spacing in 2005. Inversion of the MT data with 1D, 2D and 3D algorithms showed that the maximum thickness of the unconsolidated sediments is ~3 km in the Erzincan Basin. The MT resistivity models show that the northern flanks of the basin have a steeper dip than the southern flanks, and the basin deepens towards the east where it has a depth of 3.5 km. The MT models also show that the structure of the NAF may vary from east to west along the Erzincan Basin.  相似文献   

6.
Superimposed on a regional pattern of oroclinal bending in the Aegean and west Anatolian regions, the coastal region of western Anatolia, shows a complex and chaotic pattern of coexisting clockwise and counterclockwise rotations. Here, we report new palaeomagnetic data from the eastern Aegean island of Chios, to test whether this fits the regional palaeomagnetic pattern associated with the Aegean orocline, or should be included in the narrow zone of chaotic palaeomagnetic directions. Therefore, a combined palaeomagnetic study of Miocene sediments and volcanic rocks has been carried out. Thermal and AF demagnetization of a 130-m thick Middle Miocene succession from the Michalos claypit allowed a stable component of both polarities to be isolated while rock magnetic experiments showed that the main magnetic carrier is magnetite. When compared with the Eurasian reference, the mean declination of 348 ± 5.1° implies 15° of counterclockwise rotation since Middle Miocene times. The obtained shallow inclination of 38 ± 6.7° was corrected to 61.8 ± 3.9°, by applying the elongation/inclination correction method for inclination shallowing. This result is similar to the expected inclination of 58° for the latitude of Chios. The palaeomagnetic analysis (demagnetization treatment and corresponding rock magnetic measurements) of the volcanic rocks identify a stable, predominantly normal, ChRM with poorly constrained mean declination of about 290 ± 19.8° based on five successfully resolved components. The significantly different palaeomagnetic results obtained from an island as small as Chios (and a very short distance), and the relatively large rotation amounts do not fit the regional palaeomagnetic direction of Lesbos and basins in northwestern Turkey which show little or no significant rotation. We thus prefer to include Chios in the coastal zone of chaotic rotations, which may represent a previously inferred tectonic transfer zone that accommodates lateral differences in extensional strain within the Aegean back-arc.  相似文献   

7.
Theoretical considerations of lithosphere deformation across transform plate boundaries predict an expression in terms of 3istributed deformation. The magnitude of rotation is expected to diminish away from the fault zone in a way which depends on the length of the fault, the amount of displacement, and the ductility of the lithosphere. Palaeomagnetic studies across the North Anatolian transform fault zone, which separates the Eurasian Plate and Anatolian Block in northern Turkey, show that clockwise rotations predicted from the sense of dextral motion are indeed present and have attained finite rotations of up to 270° during the 5 Ma history of Neotectonic deformation. Such rotations are, however, confined to narrow ( 10 km wide) zones between system-bounding faults and appear to have resulted from rotation in ball-bearing fashion of equidimensional blocks a few kilometres in size. Outside of this zone only anticlockwise rotations are observed; these are unrelated to deformation across the fault zone and record regional anticlockwise rotation of Turkey which is complementing clockwise rotation of Greece and accompanying Neogene opening of the Aegean Sea. The observed behaviour of continental lithosphere satisfies no plausible value of power law behaviour. We therefore conclude that relative motion across this transform boundary occurs as a discrete zone of intense deformation within a brittle layer comprising the seismogenic upper crust. This is presumed to be detached from a continuum deformation response to shearing in the lower crust and mantle beneath.  相似文献   

8.
The right-lateral strike-slip El Pilar Fault is one of the major structures that accommodate the relative displacement between the Caribbean and South-America Plates. This fault, which trends East–West along the northeastern Venezuela margin, is a seismogenic source, and shows numerous evidence for active tectonics, including deformation of the Quaternary sediments filling the Cariaco Gulf. Because the main El Pilar Fault strand belongs to a set of strike-slip faults and thrusts between the stable Guyana shield (South) and the Caribbean oceanic floor (North), a GPS network was designed and installed to measure the relative motion of the El Pilar Fault and other faults. The results obtained from the comparison of 2003 and 2005 surveys indicate: (i) a lack of significant displacement (especially shortening) in the Serrania del Interior (Neogene cordillera overthrusted above the Guyana craton), (ii) an eastward displacement (relative to fixed south America plate) up to 22 mm/year of benchmarks located north of the El Pilar Fault.  相似文献   

9.
Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau. The strain rate along this shear zone may reach up to 4-6 mm/a. Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before. The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults. The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault. According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a. The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau. Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east. The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block. This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic till now. The Longriba fault zone is just an active fault zone newly-generated in late Quaternary along this tectonic system.  相似文献   

10.
小江断裂带中段的北东向断裂与断块结构   总被引:8,自引:0,他引:8       下载免费PDF全文
沈军  俞维贤 《地震地质》1997,19(3):12-210
小江断裂带中段东西支断裂间存在的NE向断裂是在第三纪NE向断裂的基础上,于第四纪中晚期开始新的活动,并具有左旋走滑运动的特征,有些在全新世仍有活动。它们的活动从属于小江断裂带的整体左旋走滑运动,其运动幅度和速率比近SN向小江东西支断裂小得多,但是由于它们的运动,使主断裂产生弯曲或阶区,形成有利于应力和应变集中的障碍。夹于东西支断裂之间的断块被NE向断裂切割为多个次级菱形和梭形断块,这些断块之间的相对运动对断裂分段和地震孕育过程具有不可忽视的影响  相似文献   

11.
The Gobi Altai region of southwestern Mongolia is a natural laboratory for studying processes of active, transpressional, intracontinental mountain building at different stages of development. The region is structurally dominated by several major E—W left-lateral strike-slip fault systems. The North Gobi Altai fault system is a seismically active, right-stepping, left-lateral, strike-slip fault system that can be traced along the surface for over 350 km. The eastern two-thirds of the fault system ruptured during a major earthquake (M = 8.3) in 1957, whereas degraded fault scarps cutting alluvial deposits along the western third of the system indicate that this segment did not rupture during the 1957 event but has been active during the Quaternary. The highest mountains in the Gobi Altai are restraining bend uplifts along the length of the fault system. Detailed transects across two of the restraining bends indicate that they have asymmetric flower structure cross-sectional geometries, with thrust faults rooting into oblique-slip and strike-slip master faults. Continued NE-directed convergence across the fault system, coupled with left-lateral strike-slip displacements, will lead to growth and coalescence of the restraining bends into a continuous sublinear range, possibly obscuring the original strike-slip fault system; this may be a common mountain building process.

The largely unknown Gobi-Tien Shan fault system is a major left-lateral strike-slip fault system (1200 km + long) that links the southern ranges of the Gobi Altai with the Barkol Tagh and Bogda Shan of the easternmost Tien Shan in China. Active scarps cutting alluvial deposits are visible on satellite imagery along much of its central section, indicating Quaternary activity. The total displacement is unknown, but small parallel splays have apparent offsets of 20 + km, suggesting that the main fault zone has experienced significantly more displacement. Field investigations conducted at two locations in southwestern Mongolia indicate that late Cenozoic transpressional uplift is still active along the fault system. The spatial relationship between topography and active faults in the Barkol Tagh and Bogda Shan strongly suggests that these ranges are large, coalescing, restraining bends that have accommodated the fault's left-lateral motion by thrusting, oblique-slip displacement and uplift. Thus, from a Mongolian perspective, the easternmost Tien Shan formed where it is because it lies at the western termination zone of the Gobi-Tien Shan fault system. The Gobi-Tien Shan fault system is one of the longest fault systems in central Asia and, together with the North Gobi Altai and other, smaller, subparallel fault systems, is accommodating the eastward translation of south Mongolia relative to the Hangay Dome and Siberia. These displacements are interpreted to be due to eastward viscous flow of uppermost mantle material in the topographically low, E–W trending corridor between the northern edge of the Tibetan Plateau and the Hangay Dome, presumably in response to the Indo-Eurasian collision 2500 km to the south.  相似文献   


12.
张家口—渤海断裂带分段运动变形特征分析   总被引:1,自引:0,他引:1  
陈长云 《地震》2016,36(1):1-11
利用张家口—渤海断裂带(张渤带)及其邻区1999—2007年的GPS观测数据, 研究了该区域现今地壳水平速度场特征。 运用最小二乘配置方法获得应变率场的空间分布特征, 根据区域地壳主应变率、 面膨胀率和最大剪切应变率等形变场的空间变化, 分析了张渤带各分段的形变特征。 结果表明: 相对于欧亚框架, 研究区内GPS速度场以SE方向运动为主; 应变场以NE方向的主压应变为主, 伴随着近NW方向的张性应变; 整个张渤带及其邻区的高剪切变形区主要位于河北香河、 文安以及唐山等三个地区。 利用跨断层GPS剖面分析得到张渤带以左旋走滑为主, 兼有挤压运动。 华北平原块体和燕山块体的相对运动是张渤带左旋走滑的直接动力来源, 而印度板块与欧亚板块碰撞后继续向北的推挤作用则是张渤带运动变形的根本动力来源, 太平洋板块的作用相对较弱。  相似文献   

13.
We have collected GPS data in the period of 1999-2007 from the Crustal Motion Observation Network of China along the Zhangjiakou-Bohai fault and its adjacent regions to study the characteristics of present-day crustal horizontal motion velocities in the research zone.Strain rate components are computed in the spheric coordinate system by the least square collocation method.According to the spatial distribution of the principal strain rate,dilation rate and maximum shear strain rate derived from GPS measurements,this paper analyses the deformation of the subordinary faults of the Zhangjiakou-Bohai fault.The principal compression strain rates are apparently greater than the principal extension strain rates.The larger shear strain rate is mainly in and around the Xianghe,Wenan and Tangshan areas in Hebei Province.According to the profiles across different segments of the Zhangjiakou-Bohai fault,the three segments glong the Zhangjiakou-Bohai fault show an obviously left-lateal strike-slip and compression characteristics.By analysis of the motion characteristics of the blocks,e.g.the Yanshan block,North China Plain block,Ordos block,and Ludong-Huanghai block in and around the North China region,this paper speculates that the dynamics of the motion styles of Zhangjiakou-Bohai fault may directly come from the relative movement between the Yanshan block and the North China plain block,and the ultimate dynamics may be the results of the collison between Indian plate and Eurasian plate,and the persistent northeastward extrusion of the Indian plate.  相似文献   

14.
15.
Introduction The Tanlu fault zone, the largest active structure in the eastern region of China, is character-ized by right lateral strike-slip movement with dip-slip component in the Quaternary; it shows great significance for the modern seismicity (FANG et al, 1976; Institute of Geophysics, China Earthquake Administration, 1987; GAO et al, 1980; MA, 1987; LI, 1989; CHAO et al, 1995). The Tanlu fault zone is the boundary between the Jiaoliao block and the North China Plain block of …  相似文献   

16.
莱州湾海域郯庐断裂带活断层探测   总被引:21,自引:0,他引:21       下载免费PDF全文
利用浅地层剖面仪对郯庐断裂带莱州湾段进行了活断层探测,发现郯庐断裂带主干断裂在第四纪晚期以来具有明显的活动,继承了晚第三纪以来的主要构造活动特点,仍是这一区域的主导性构造. 西支KL3断裂由多条高角度正断裂组成,最新活动时代为晚更新世晚期至全新世早期,受到一系列错断晚更新世晚期沉积的北东或近东西向断裂的切割;东支龙口断裂由两段右阶斜列的次级断层组成,沿断裂带不但有明显的晚第四纪断错活动,而且还发育北北东向晚第四纪生长褶皱,表现出明显的晚更新世晚期至全新世活动特征. 在山东陆地区也发现了与龙口断裂相对应的安丘——莒县断裂,安丘段由一系列右阶斜列的次级断层组成. 从安丘向北至莱州湾凹陷,郯庐断裂带东支活断层构成了一条右旋单剪变形带,每一个次级活断层段相当于带内理论上次级压剪面,在第四纪晚期以来仍以右旋走滑活动为主要特征.   相似文献   

17.
Characteristics of seismic activity along the North Anatolian Fault Zone are analyzed between 1970 and 2010. Magnitude completeness changes between 2.7 and 2.9 in the North Anatolian Fault Zone. The frequency-magnitude distribution of earthquakes is well represented with a b-value typically close to 1. A clear decrease in temporal distribution of b-value is observed before the strong main shocks. Correlation dimension values are relatively large and the seismic activity is more clustered at larger scales in the North Anatolian Fault Zone.  相似文献   

18.
中国及邻区现代地块运动的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
洪汉争 《地震地质》1990,12(4):319-331
本文利用板块几何学的方法研究中国及邻区地块间的相对运动,用数值方法计算了地块运动的角速度及边界断层的滑动速率。计算结果与活断层数据相当吻合,本文还利用地块运动速度讨论了我国现代构造活动  相似文献   

19.
The Tan-Lu Fault Zone(TLFZ), a well-known lithosphere fault zone in eastern China, is a boundary tectonic belt of the secondary block within the North China plate, and its seismic risk has always been a focus problem. Previous studies were primarily conducted on the eastern graben faults of the Yishu segment where there are historical earthquake records, but the faults in western graben have seldom been involved. So, there has been no agreement about the activity of the western graben fault from the previous studies. This paper focuses on the activity of the two buried faults in the western graben along the southern segment of Yishu through combination of shallow seismic reflection profile and composite drilling section exploration. Shallow seismic reflection profile reveals that the Tangwu-Gegou Fault(F4)only affects the top surface of Suqian Formation, therefore, the fault may be an early Quaternary fault. The Yishui-Tangtou Fault(F3)has displaced the upper Pleistocene series in the shallow seismic reflection profile, suggesting that the fault may be a late Pleistocene active fault. Drilling was implemented in Caiji Town and Lingcheng Town along the Yishui-Tangtou Fault(F3)respectively, and the result shows that the latest activity time of Yishui-Tangtou Fault(F3)is between(91.2±4.4)ka and(97.0±4.8)ka, therefore, the fault belongs to late Pleistocene active fault. Combined with the latest research on the activity of other faults along TLFZ, both faults in eastern and western graben were active during the late Pleistocene in the southern segment of the Yishu fault zone, however, only the fault in eastern graben was active in the Holocene. This phenomenon is the tectonic response to the subduction of the Pacific and Philippine Sea Plate and collision between India and Asian Plate. The two late Quaternary active faults in the Yishu segment of TLFZ are deep faults and present different forms on the surface and in near surface according to studies of deep seismic reflection profile, seismic wave function and seismic relocation. Considering the tectonic structure of the southern segment of Yishu fault zone, the relationship between deep and shallow structures, and the impact of 1668 Tancheng earthquake(M=8(1/2)), the seismogenic ability of moderate-strong earthquake along the Yishui-Tangtou Fault(F3)can't be ignored.  相似文献   

20.
Based on high-precision data obtained in the past decade from GPS re-measurement in the North China Network, the Crustal Movement Observation Network of China (CMONOC) and GPS measurement along the Shanxi graben zone, the status and evolution of horizontal crustal movement in the North China region are analyzed. The results show that (1) the Yanshan tectonic zone (Zhangjiakou-Bohai Sea zone)is an active one with the largest horizontal strain in the North China region; The largest tendency differential movement of adjacent blocks is seen between the Yanshan block and the North China plain block; about 2mm/a (left lateral) ; (2)The significant horizontal differential movement along the boundaries of the North China region is characterized by right-lateral strike-slip movement at the middle-north segment on its west boundary (composed of Yinchuan and other active tectonic zones) and compressive movement at the south segment; while the Yinshan rift zone located along the west segment on its north boundary is dominated by tensile movement. Other boundaries and zones have no obvious differential movement; (3) On the whole, measurements of each period differ from one another, which might result from the nonlinear movement component as well as from the error effect. In the paper, results of the relative movement and strain in different periods are given for different blocks and boundary zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号