首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The perturbed motion of comet Halley and comet Mackholz 1 1986 VIII was investigated within a time interval of about 20 millennia. The minimal distance of 0.043 AU between P/Halley and Venus may occur on April 4, 4868 AD. The distance of 0.036 AU between P/Halley and Jupiter will take place on April 1, 6616 AD. The orbit of P/Machholz 1 crosses the orbits of Mercury and Venus eight times, that of the Earth six or eight times, and the orbit of Mars four times per a period of advance of the argument of perihelion. A distance of about 0.06 AU between P/Machholz 1 and the Earth may take place in August 2576 AD and 5751 AD and in February 4770 AD. The minimal comet-Earth distance of 0.035 AU occurs on September 14, 5971 AD. The closest encounter between P/Machholz 1 and Jupiter at the distance of 0.098 AU may be in May 4499 AD. These results may be considered as a forecast of possible collisions.  相似文献   

2.
We have simulated the formation and evolution of comet 1P/Halley’s meteoroid stream by ejecting particles from the nucleus 5000 years ago and propagating them forward to the present. Our aim is to determine the existence and characteristics of associated meteor showers at Mars and Venus and compare them with 1P/Halley’s two known showers at the Earth. We find that one shower should be present at Venus and two at Mars. The number of meteors in those atmospheres would, in general, be less than that at the Earth. The descending node branch of the Halley stream at Mars exhibits a clumpy structure. We identified at least one of these clumps as particles trapped in the 7:1 mean motion resonance with Jupiter, potentially capable of producing meteor ourbursts of ZHR∼1000 roughly once per century.  相似文献   

3.
The object P/2010 TO20 LINEAR-Grauer, discovered at a heliocentric distance of over 5 AU, and at first classified as a Trojan, is now believed to be a comet. This paper reports special observations of the object that have allowed a significant refinement of its orbit and investigation of its dynamic evolution. It is shown that P/2010 TO20 LINEAR-Grauer is not a Trojan yet demonstrates unusual dynamic features. In particular, the object moves in a temporary satellite orbit relative to Jupiter over the observation interval. The comet has been in the Hill sphere for about two years and has made one revolution around the planet. The jovicentric distance function has two minima, and the smallest distance is 0.075 AU. Our estimates show that, with a probability of 0.76, the comet is likely to move in a Jupiter family orbit with a perihelion distance of less than 2.5 AU. The average time for such a transition is around forty thousand years.  相似文献   

4.
We investigate the possibility of detectable meteor shower activity in the atmosphere of Venus. We compare the Venus-approaching population of known periodic comets, suspected cometary asteroids and meteor streams with that of the Earth. We find that a similar number of Halley-type comets but a substantially lesser population of Jupiter family comets approach Venus. Parent bodies of prominent meteor showers that might occur at Venus have been determined based on minimum orbital distance. These are: Comets 1P/Halley, parent of the η Aquarid and Orionid streams at the Earth; 45P/Honda-Mrkos-Pajdusakova which currently approaches the venusian orbit to 0.0016 AU; three Halley-type comets (12P/Pons-Brooks, 27P/Crommelin and 122P/de Vico), all intercepting the planet's orbit within a 5-day arc in solar longitude; and Asteroid (3200) Phaethon, parent of the December Geminids at the Earth. In addition, several minor streams and a number of cometary asteroid orbits are found to approach the orbit of Venus sufficiently close to raise the possibility of some activity at that planet. Using an analytical approach described in Adolfsson et al. (Icarus 119 (1996) 144) we show that venusian meteors would be as bright or up to 2 magnitudes brighter than their Earth counterparts and reach maximum luminosity at an altitude range of 100-120, 20-30 km higher than at the Earth, in a predominantly clear region of the atmosphere. We discuss the feasibility of observing venusian showers based on current capabilities and conclude that a downward-looking Venus-orbiting meteor detector would be more suitable for these purposes than Earth-based monitoring. The former would detect a shower of an equivalent Zenithal Hourly Rate of at least several tens of meteors.  相似文献   

5.
The newly discovered periodic comet P/2008 T1 (Boattini) is found to have experienced a recent capture into its present orbit, following a close approach to Saturn in 1995 to within 0.17 AU. This orbital change transferred the comet into an orbit tangent to that of Jupiter, which lead to an even closer passage within 0.02 AU with that planet in 2003 decoupling it from the influence of Saturn (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Comet Grigg–Skjellerup must return to its perihelion on November 29, 2002. Before that, it will pass by Jupiter at a distance of 0.5 AU. A simulation of the meteor swarm that is related to this comet in origin has been made for 19 perihelia since 1907. Particles ejected from the nucleus at velocities ±40 m/s in the direction perpendicular to its radius vector are concentrated around the comet and do not approach the Earth, while for particles ejected at velocities ±60 m/s, conditions for the encounter with Jupiter are different; they approach Jupiter to a distance of 0.1 AU, then pass near the Earth's orbit at a distance of 0.01 AU. However, these particles have substantially different radiant coordinates and hardly form a flow of sufficient density.  相似文献   

7.
The newly discovered periodic comet P/2004 A1 (LONEOS) is found to have experienced a recent capture into its present orbit, following a close approach to Saturn in 1992 to within 0.032 AU. This induced orbital change transfered the comet into an orbit tangent to that of Jupiter, which will, after a close passage in 2026, gain control by further decoupling it from the influence of Saturn. A long‐term orbital investigation yields support that the comet is on its first sojourn into the inner solar system. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Comet 81P/Wild 2 was observed in the thermal infrared over 6 months during its 1997 perihelion passage. The comet was most active in late February, about 3 months preperihelion; dust production declined by a factor of 3 between February and August. For the GIOTTO Halley dust size distribution, maximum dust production rate was ∼2 × 106 g/s. The comet displayed a 10-μm silicate feature about 25% above the continuum, similar to several other Jupiter-family comets, but much lower than that seen in a number of Oort cloud comets.NASA’s STARDUST sample return mission will encounter P/Wild 2 98 days postperihelion in January 2004. Based on our observations at a similar point in the orbit and the Halley size distribution, we predict that the mass fluence on the spacecraft for a 150 km miss distance will be about 8 × 10−6 g/cm2 for particles up to 1 cm in radius. The corresponding areal coverage will be about 10−4.  相似文献   

9.
Magnitudes of comets P/Giacobini-Zinner (1984e), P/Halley (1982i), P/Hartley-Good (1985 1), and Thiele (1985 m) in the bandpasses of the standard IHW comet filters are presented. For comet P/Halley production rates for CN, C3, C2, and solids were derived. For the gaseous components these show a strong dependence on heliocentric distance. The dependence is less steep for the solids which may be due to relatively pronounced backscattering properties in case of comet P/Halley. During one night (1985 Dec. 22/23) intensity profiles along three sections through the coma of comet P/Halley were measured. Compared with theoretical profiles they show a global anisotropy of the coma and possibly local structure.  相似文献   

10.
As any comet nears the Sun, gas sublimes from the nucleus taking dust with it. Jupiter family comets are no exception. The neutral gas becomes ionized, and the interaction of a comet with the solar wind starts with ion pickup. This key process is also important in other solar system contexts wherever neutral particles become ionized and injected into a flowing plasma such as at Mars, Venus, Io, Titan and interstellar neutrals in the solar wind. At comets, ion pickup removes momentum and energy from the solar wind and puts it into cometary particles, which are then thermalised via plasma waves. Here we review what comets have shown us about how this process operates, and briefly look at how this can be applied in other contexts. We review the processes of pitch angle and energy scattering of the pickup ions, and the boundaries and regions in the comet-solar wind interaction. We use in-situ measurements from the four comets visited to date by spacecraft carrying plasma instrumentation: 21P/Giacobini-Zinner, 1P/Halley, 26P/Grigg-Skjellerup and 19P/Borrelly, to illustrate the process in action. While, of these, comet Halley is not a Jupiter class comet, it has told us the most about cometary plasma environments. The other comets, which are from the Jupiter family, give an interesting comparison as they have lower gas production rates and less-developed interactions. We examine the prospects for Rosetta at comet Churyumov-Gerasimenko, another Jupiter family comet where a wide range of gas production rates will be studied.  相似文献   

11.
Comet P/Halley has been observed during its approach to perihelion at heliocentric distancesR = 11.0 AU and R = 8.2 AU. No extended coma is seen and limits can be placed on the fraction of the total light contributed by coma. The brightness of the comet varies on a short time scale. The variations may be due to transient activity or to rotation of the irregular nucleus.  相似文献   

12.
Abstract— Using visual observations that were reported 140 years ago in the Comptes Rendus de l'Académie des Sciences de Paris, we have determined the atmospheric trajectory and the orbit of the Orgueil meteorite, which fell May 14, 1864, near Montauban, France. Despite the intrinsic uncertainty of visual observations, we were able to calculate a reasonably precise atmospheric trajectory and a moderately precise orbit for the Orgueil meteoroid. The atmosphere entry point was ?70 km high and the meteoroid terminal point was ?20 km high. The calculated luminous path was ?150 km with an entry angle of 20°. These characteristics are broadly similar to that of other meteorites for which the trajectory is known. Five out of six orbital parameters for the Orgueil orbit are well constrained. In particular, the perihelion lies inside the Earth's orbit (q ?0.87 AU), as is expected for an Earth‐crossing meteorite, and the orbital plane is close to the ecliptic (i ?0°). The aphelion distance (Q) depends critically on the pre‐atmospheric velocity. From the calculated atmospheric path and the fireball duration, which was reported by seven witnesses, we have estimated the pre‐atmospheric velocity to be larger than 17.8 km/sec, which corresponds to an aphelion distance Q larger than 5.2 AU, the semi‐major axis of Jupiter orbit. These results suggest that Orgueil has an orbit similar to that of Jupiter‐family comets (JFCs), although an Halley‐type comet cannot be excluded. This is at odds with other meteorites that have an asteroidal origin, but it is compatible with 140 years of data‐gathering that has established the very special nature of Orgueil compared to other meteorites. A cometary origin of the Orgueil meteorite does not contradict cosmochemistry data on CI1 chondrites. If CI1 chondrites originate from comets, it implies that comets are much more processed than previously thought and should contain secondary minerals. The forthcoming return of cometary samples by the Stardust mission will provide a unique opportunity to corroborate (or contradict) our hypothesis.  相似文献   

13.
Numerical integrations of 99 orbits centered on that of comet P/Scotti (P/2000 Y3), and of the nominal orbit, were made 4000 days backwards in time, and 73000 days into the future. The integrations show that this comet has been transferred into its present orbit as recently as 1998. The future orbital evolution indicates a stable period for almost 150 years, when another close encounter with Jupiter may lead to further drastic changes of the present orbit.  相似文献   

14.
The two major sources of collisionless shocks in the solar wind are interplanetary coronal mass ejections (ICMEs) and stream interaction regions (SIRs). Previous studies show that some SIR-associated shocks form between Venus and Earth while most form beyond 1 AU. Here we examine the high-resolution magnetometer records from Helios 1 and 2 obtained between 0.28 and 1 AU and from MESSENGER obtained between 0.3 and 0.7 AU to further refine our understanding as to where, and in what context, shocks are formed in the inner solar system. From Helios data (Helios 1 from 1974 to 1981 and Helios 2 from 1976 to 1980), we find there were only a few shocks observed inside the orbit of Venus with the closest shock to the Sun at 0.29 AU. We find that there is a strong correlation between shock occurrence and solar activity as measured by the sunspot number. Most of the shocks inside of the orbit of Venus appear to be associated with ICMEs. Even the ICME-associated shocks are quite weak inside the orbit of Venus. By comparing MESSENGER and STEREO results, from 2007 to 2009, we find that in the deep solar minimum, SIR-driven shocks began to form at about 0.4 AU and increased in number with heliocentric distance.  相似文献   

15.
Comet outburst activity and the structure of solar wind streams were compared on the basis of Pioneer 10, 11, Vela 3 and IMP 7, 8 measurements at the heliocentric distance r ≈ 1–6 AU. It is shown that the solar wind velocity waves which are evolving into corotating shock waves beyond the Earth orbit may be responsible for comet outburst activity. The correlation between variations of comet outburst activity with heliocentric distance and the behavior of the solar wind velocity waves is established. The closeness of the characteristic times for the velocity waves and comet outburst activity (7–8 days at r = 1 AU) as well as the simultaneous growth of both the characteristic times with r are noted. The observed distribution of the comet outburst activity parameters during the 11-year cycle is also in good agreement with the phase distributions during the 11-year cycle of variations of the coronal hole areas and the rate of change of the sunspot area δS p.  相似文献   

16.
On the origin of the unusual orbit of Comet 2P/Encke   总被引:1,自引:0,他引:1  
The orbit of Comet 2P/Encke is difficult to understand because it is decoupled from Jupiter—its aphelion distance is only 4.1 AU. We present a series of orbital integrations designed to determine whether the orbit of Comet 2P/Encke can simply be the result of gravitational interactions between Jupiter-family comets and the terrestrial planets. To accomplish this, we integrated the orbits of a large number of objects from the trans-neptunian region, through the realm of the giant planets, and into the inner Solar System. We find that at any one time, our model predicts that there should be roughly 12 objects in Encke-like orbits. However, it takes roughly 200 times longer to evolve onto an orbit like this than the typical cometary physical lifetime. Thus, we suggest that (i) 2P/Encke became dormant soon after it was kicked inward by Jupiter, (ii) it spent a significant amount of time inactive while rattling around the inner Solar System, and (iii) it only became active again as the ν6 secular resonance drove down its perihelion distance.  相似文献   

17.
A new orbit for comet C/1858 L1 (Donati), based on 1036 observations in α and 971 in σ made between 7 June 1858 and 5 March 1859, is calculated using iteratively reweighted least squares. Residuals were weighted by the Welsch weighting function. The orbit represents a high eccentricity ellipse, e = 0.996265, with large semi‐major axis, a = 154.8612 AU, and long period, P = 1927.22 yr. The residuals are relatively random, a 10.7% chance of being random, but with a slight indication of possible nongravitational forces influencing the motion. The comet will not return until the year 3759, when it will pass 0.8442 AU from the Earth. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Oort cloud comets occasionally obtain orbits which take them through the planetary region. The perturbations by the planets are likely to change the orbit of the comet. We model this process by using a Monte Carlo method and cross sections for orbital changes, i.e. changes in energy, inclination and perihelion distance, in a single planet-comet encounter. The influence of all major planets is considered. We study the distributions of orbital parameters of observable comets, i.e. those which have perihelion distance smaller than a given value. We find that enough comets are captured from the Oort cloud in order to explain the present populations of short period comets. The median value of cos i for the Jupiter family is 0.985 while it is 0.27 for the Halley types. The results may explain the orbital features of short period comets, assuming that the active lifetime of a comet is not much greater than 400 orbital revolutions.  相似文献   

19.
The meteoroid streams associated to short-period comets 9P/Tempel 1 (the target of the Deep Impact mission). and 67P/Churyumov-Gerasimenko (the target of the Rosetta mission) are studied. Their structure is overwhelmingly under the control of Jupiter and repeated relatively close encounters cause a reversal of the direction of the spatial distribution of the stream relative to the comet* an initial stream trailing the comet as usually seen eventually collapses, becomes a new stream leading the comet and even splits into several components. Although these two comets do not produce meteor showers on Earth, this above feature shows that meteor storms can occur several years before the perihelion passage of a parent body.  相似文献   

20.
Oort cloud comets occasionally obtain orbits which take them through the planetary region. The perturbations by the planets are likely to change the orbit of the comet. We model this process by using a Monte Carlo method and cross sections for orbital changes, i.e. changes in energy, inclination and perihelion distance, in a single planet-comet encounter. The influence of all major planets is considered. We study the distributions of orbital parameters of observable comets, i.e. those which have perihelion distance smaller than a given value. We find that enough comets are captured from the Oort cloud in order to explain the present populations of short period comets. The median value of cos i for the Jupiter family is 0.985 while it is 0.27 for the Halley types. The results may explain the orbital features of short period comets, assuming that the active lifetime of a comet is not much greater than 400 orbital revolutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号