首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The He, C, N, and O abundances in more than 120 planetary nebulae (PNe) of our Galaxy and the Magellanic Clouds have been redetermined by analyzing new PNe observations. The characteristics of PNe obtained by modeling their spectra have been used to compile a new catalog of parameters for Galactic and extragalactic PNe, which is accessible at http://www.astro.spbu.ru/staff/afk/GalChemEvol.html. The errors in the parameters of PNe and their elemental abundances related to inaccuracies in the observational data have been analyzed. The He abundance is determined with an accuracy of 0.06 dex, while the errors in the C, N, and O abundances are 0.1–0.2 dex. Taking into account the inaccuracies in the corrections for the ionization stages of the elements whose lines are absent in the PNe spectra increases the errors in the He abundance to 0.1 dex and in the C, N, and O abundances to 0.2–0.3 dex. The elemental abundances in PNe of various Galactic subsystems and the Magellanic Clouds have been analyzed. This analysis suggests that the Galactic bulge objects are similar to type II PNe in Peimbert’s classification, whose progenitor stars belong to the thin-disk population with ages of at least 4–6 Gyr. A similarity between the elemental abundances in PNe of the Magellanic Clouds and the Galactic halo has been established.  相似文献   

2.
We have undertaken a mid-infrared (MIR) search for new planetary nebulae (PNe) using the Spitzer Space Telescope GLIMPSE Galactic plane survey. This has involved searching extant GLIMPSE data products for morphologically appropriate structures, and investigating sources having IRAS colours similar to those of Galactic PNe. We have found 12 sources which have a high probability of being high-extinction PNe, and which possess MIR and IRAS colours, and shell morphologies similar to those of previously identified Galactic nebulae. Calibrated mapping of these structures and profiles in all four of the IRAC bands (3.6, 4.5, 5.8 and  8.0 μm  ) suggests that many (if not all) of the nebulae possess at least two primary structures: an interior high surface brightness shell, corresponding to what is probably the primary ionized zone, and a much weaker halo extending to very much greater distances from the nucleus. These latter regimes are particularly evident at longer MIR wavelengths (5.8 and  8.0 μm  ), and it is probable that they trace the nebular photodissociative regimes, where emission derives from small-grain continua and/or polycyclic aromatic hydrocarbon molecular bands. This latter behaviour has also been noted in previous analyses of Galactic PNe.  相似文献   

3.
We investigate the Galactic disc distribution of a sample of planetary nebulae characterized in terms of their mid-infrared spectral features. The total number of Galactic disc PNe with 8–13 μm spectra is brought up to 74 with the inclusion of 24 new objects, the spectra of which we present for the first time. 54 PNe have clearly identified warm dust emission features, and form a sample that we use to construct the distribution of the C/O chemical balance in Galactic disc PNe. The dust emission features complement the information on the progenitor masses brought by the gas-phase N/O ratios: PNe with unidentified infrared emission bands have the highest N/O ratios, while PNe with the silicate signature have either very high N enrichment or close to none. We find a trend for a decreasing proportion of O-rich PNe towards the third and fourth Galactic quadrants. Two independent distance scales confirm that the proportion of O-rich PNe decreases from     per cent inside the solar circle to     per cent outside. PNe with warm dust are also the youngest. PNe with no warm dust are uniformly distributed in C/O and N/O ratios, and do not appear to be confined to     They also have higher 6-cm fluxes, as expected from more evolved PNe. We show that the IRAS fluxes are a good representation of the bolometric flux for compact and IR-bright PNe, which are probably optically thick. Selection of objects with     should probe a good portion of the Galactic disc for these young, dense and compact nebulae, and the dominant selection effects are rooted in the PN catalogues.  相似文献   

4.
We have analysed the near-infrared (NIR) and far-infrared (FIR) colours of MASH I and MASH II (the Macquarie/AAO/Strasbourg surveys) planetary nebulae (PNe), using data deriving from the Two-Micron All-Sky Survey and Infrared Astronomical Satellite . We were able to identify ∼5 per cent of the sources in the NIR, and a slightly larger fraction (∼12 per cent) in the FIR. It is concluded that whilst the NIR colours of these nebulae are consistent with those of less evolved (and higher surface brightness) PNe, their FIR colours are markedly different. This disparity is likely to arise as a result of an evolution in dust temperatures, in their line emission characteristics, and in the relative contributions of the 8.6 and 11.3 μm polycyclic aromatic hydrocarbon emission features. A rump of ∼9 per cent of the detected sources have values  log[ F (25 μm)/ F (60 μm)]  which are lower than can be explained in terms of normal nebular evolution, however. If these are comparable in nature to the undetected PNe, then this would argue that ∼1 in 10 of MASH I and II nebulae may represent galactic H  ii regions, Stromgren spheres, symbiotic nebulae or other unrelated categories of source.  相似文献   

5.
Based on published data, we have produced a sample of planetary nebulae (PNe) that is complete within 2 kpc of the Sun. We have estimated the total number of PNe in the Galaxy from this sample to be 17 000±3000 and determined the vertical scale height of the thin disk based on an exponential density distribution to be 197 ± 10 pc. The next sample includes PNe from the Stanghellini–Haywood catalog with minor additions. For this purpose, we have used ~200 PNe with Peimbert’s types I, II, and III. In this case, we have obtained a considerably higher value of the vertical scale height that increases noticeably with sample radius. We have experimentally found that it is necessary to reduce the distance scale of this catalog approximately by 20%. Then, for example, for PNe with heliocentric distances less than 4 kpc the vertical scale height is 256 ± 12 kpc. A kinematic analysis has confirmed the necessity of such a reduction of the distance scale.  相似文献   

6.
We report an Australia Telescope Compact Array (ATCA) radio‐continuum observations of 26 planetary nebulae (PNe) at wavelengths of 3 and 6 cm. This sample of 26 PNe were taken from the Macquarie/AAO/Strasbourg Hα PNe (MASH) catalogue and previous lists. We investigate radio detection quality including measured and derived parameters for all detected or marginally detected PNe from this combined sample. Some 11 objects from the observed sample have been successfully detected and parametrized. Except for one, all detected PNe have very low radio surface brightnesses. We use a statistical distance scale method to calculate distances and ionised masses of the detected objects. Nebulae from this sample are found tobe large (>0.2 pc in diameter) and highly diluted which indicates old age. For 21 PNe from this sample we list integrated Hα fluxes and interstellar extinction coefficients, either taken from the literature or derived here from the Balmer decrement and radio to Hα ratio methods. Finally, our detected fraction of the MASH pilot sample is relatively low compared to the non‐MASH sub‐sample. We conclude that future radio surveys of the MASH sample must involve deeper observations with better uv coverage in order to increase the fraction of detected objects and improve the quality of the derived parameters (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Planetary nebulae (PNe) are good tracers of the stellar populations, chem-ical composition and dynamics of their host galaxies. This paper reports the dis-covery of new PNe in the outskirts of the Andromeda Galaxy (M 31) with the Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope-LAMOST) during its early commissioning phase. In total, 36 candidates selected from SDSS photometry are confirmed in terms of their PN nature, including 17 new discoveries and another 19 previously known emission line objects. Their positions, spectra, radial velocities and m5007 magnitudes are presented.We discuss the potential for detecting more PNe in M 31 with GSJT's multi-object spectroscopy and the related applications in studies of the dynamics and chemistry of M31 and its assemblage history.  相似文献   

8.
Planetary nebulae (PNe) are formed in a very fast process. In just about 1000 years, the nebula evolves from a spherical and slowly expanding AGB envelope to a PN, with usually axial symmetry and high axial velocities. Molecular lines are known to probe most of the nebular material in young PNe and protoplanetary nebulae (PPNe), and are therefore very useful to study such an impressive evolution. Many quantitative results on these objects have been so obtained, including general structure, total mass and density distribution, kinetic temperatures, velocity fields, etc. Existing observations probe both the gas accelerated by post-AGB shocks and the quiescent components. But the study of crucial regions to understand PN formation (recently shocked shells, regions heated by the stellar UV and inner rotating disks) requires observations at higher frequency and with better spatial resolution.   相似文献   

9.
We present mid-infrared (MIR) photometry for 367 Galactic disc, bulge and Large Magellanic Cloud (LMC) planetary nebulae (PNe), determined using data acquired with the Spitzer Space Telescope , and through the Legacy Programs GLIMPSE II (Galactic Legacy Infrared Mid-plane Survey Extraordinaire II) and SAGE (Surveying the Agents of the Galaxy's Evolution). This has permitted us to make a comparison between the luminosity functions of bulge and LMC PNe, and between the MIR colours of all three categories of source. It is determined that whilst the  3.6 μm  luminosity functions of the LMC and bulge sources are likely to be closely similar, the [3.6]–[5.8] and [5.8]–[8-0] indices of LMC nebulae are different from those of their disc and bulge counterparts. This may arise because of enhanced  6.2 μm  polycyclic aromatic hydrocarbon emission within the LMC sources, and/or as a result of further, and more radical differences between the spectra of LMC and Galactic PNe. We also determine that the more evolved disc sources listed in the Macquarie/AAO/Strasbourg (MASH) catalogues of Parker et al. and Miszalski et al. have similar colours to those of the less evolved (and higher surface brightness) sources in the catalogue of Acker et al., a result which appears at variance with previous studies of these sources.  相似文献   

10.
We present the Macquarie/AAO/Strasbourg Hα Planetary Nebula Catalogue (MASH) of over 900 true, likely and possible new Galactic planetary nebulae (PNe) discovered from the AAO/UKST Hα survey of the southern Galactic plane. The combination of depth, resolution, uniformity and areal coverage of the Hα survey has opened up a hitherto unexplored region of parameter space permitting the detection of this significant new PN sample. Away from the Galactic bulge the new PNe are typically more evolved, of larger angular extent, of lower surface brightness and more obscured (i.e. extinguished) than those in most previous surveys. We have also doubled the number of PNe in the Galactic bulge itself and although most are compact, we have also found more evolved examples. The MASH catalogue represents the culmination of a seven-year programme of identification and confirmatory spectroscopy. A key strength is that the entire sample has been derived from the same, uniform observational data. The 60 per cent increase in known Galactic PNe represents the largest ever incremental sample of such discoveries and will have a significant impact on many aspects of PN research. This is especially important for studies at the faint end of the PN luminosity function which was previously poorly represented.  相似文献   

11.
A sample of 25 infrared-bright planetary nebulae (PNe) towards the Galactic bulge is analysed through 8–13 μm spectroscopy. The classification of the warm dust emission features provides a measure of the C/O chemical balance, and represents the first C/O estimates for bulge PNe. Out of 13 PNe with identified dust types, four PNe have emission features associated with C-based grains, while the remaining 9 have O-rich dust signatures. The low fraction of C-rich PNe, ≲ 30 per cent, contrasts with that for local PNe, around ∼ 80 per cent, although it follows the trend for a decreasing frequency of C-rich PNe with galactocentric radius (Paper I). We investigate whether the PNe discussed here are linked to the bulge stellar population (similar to type IV, or halo, PNe) or the inner Galactic disc (a young and super-metal-rich population). Although 60 per cent of the PNe with warm dust are convincing bulge members, none of the C-rich PNe satisfies our criteria, and they are probably linked to the inner Galactic disc. In the framework of single star evolution, the available information on bulge PNe points towards a progenitor population similar in age to that of local PNe (type I PNe are found in similar proportions), but super-metal-rich (to account for the scarcity of C-rich objects). Yet the metallicities of bulge PNe, as inferred from [O/H], fail to reach the required values – except for the C-rich objects. It is likely that the sample discussed here is derived from a mixed disc/bulge progenitor population and dominated by type IV PNe, as suggested by Peimbert. The much higher fraction of O-rich PNe in this sample than in the solar neighbourhood should result in a proportionally greater injection of silicate grains into the inner Galactic medium.  相似文献   

12.
There are about 50 galactic planetary nebulae know to have [WR] type nuclei. We have compared their nebular properties with those of the other planetary nebulae in the Galaxy. We have found that the nebular morphological types are similarly distributed in the two groups. Bipolar nebulae constitute only 20% of the total in each group. The distribution of the nebular electron densities and abundance ratios N/O, He/H and C/O are the same in the two groups. The only marked difference is that nebular expansion velocities are larger in the group of planetary nebulae with [WR] central stars. We argue that the WR phenomenon does not preferentially occur in more massive central stars of planetary nebulae, contrary to what has been suggested in some former studies. We demonstrate that, for most of the observed [WR] type objects, the WR phenomenon cannot be triggered by a late helium shell flash event.The results of our investigation are published inAstronomy & Astrophysics 303, 893 (1995) and in the proceedings of the 2nd International Colloquium on Hydrogen-deficient Stars, C.S. Jeffery & U. Heber (eds), Astronomical Society of the Pacific Conference Series, Vol. 96, p. 209 (1996).  相似文献   

13.
An analysis is undertaken of the relation between dust/gas mass ratios and elemental abundances within planetary nebulae (PNe). It is found that M DUST/ M GAS is broadly invariant with abundance, and similar to the values observed in asymptotic giant branch (AGB)-type stars. However, it is noted that the masses of dust observed in low-abundance PNe are similar to the masses of heavy elements observed in the gas phase. This is taken to imply that levels of elemental depletion must be particularly severe, and extend to many more species than have been identified so far. In particular, given that levels of C and O depletion are likely to be large, then this probably implies that species such as Fe, S, Si and Mg are depleted as well. There is already evidence for depletion of Fe, Si and Mg in individual PNe. It follows that whilst quoted abundances may accurately reflect gas-phase conditions, they are likely to be at variance with intrinsic abundances in low Z N nebulae.
Finally, we note that there appears to be a variation in dust/gas mass ratios with galactocentric distance, with gradient similar to that observed for several elemental abundances. This may represent direct evidence for a correlation between dust/gas mass ratios and nebular abundances.  相似文献   

14.
High spectral resolution spectroscopy has proved to be very useful for the advancement of chemical abundances studies in photoionized nebulae, such as H II regions and planetary nebulae (PNe). Classical analyses make use of the intensity of bright collisionally excited lines (CELs), which have a strong dependence on the electron temperature and density. By using high resolution spectrophotometric data, our group has led the determination of chemical abundances of some heavy element ions, mainly O++, O+, and C++ from faint recombination lines (RLs), allowing us to deblend them from other nearby emission lines or sky features. The importance of these lines is that their emissivity depends weakly on the temperature and density structure of the gas. The unresolved issue in this field is that recombination lines of heavy element ions give abundances that are about 2–3 times higher than those derived from CELs – in H II regions – for the same ion, and can even be a factor of 70 times higher in some PNe. This uncertainty puts into doubt the validity of face values of metallicity that we use as representative not only for ionized nebulae in the Local Universe, but also for star‐forming dwarf and spiral galaxies at different redshifts. Additionally, high‐resolution data can allow us to detect and deblend faint lines of neutron capture element ions in PNe. This information would introduce further restrictions to evolution models of AGBs and would help to quantify the chemical enrichment in s‐elements produced by low and intermediate mass stars. The availability of an échelle spectrograph at the E‐ELT will be of paramount interest to: (a) extend the studies of heavyelement recombination lines to low metallicity objects, (b) to extend abundance determinations of s‐elements to planetary nebulae in the extragalactic domain and to bright Galactic and extragalactic H II regions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Using a numerically accurate radiation-gas dynamical method we investigate the winds scenario for aspherical planetary nebulae (PNe). Our model includes the interaction of two winds: as low high mass-loss rate wind (a `super wind'); and a fast wind; low mass-loss rate wind. Our model also includes the evolution of the UV spectrum of the PNe centeral star. As stated in the section3 of Paper I (Ganbari and Khesali, 2001), we consider a three dimensional density distribution ρ(r,θφ for the super wind, in this way we enter the effects of cooling and heating mechanisms in our model. Taking into account the above assumptions, we introduce the code (DIS3D) and numerically we study the dynamical and ionization properties of the planetary nebula NGC3132. We show that it is possible by simulations to reproduce the shape of PNe in three dimensions, and calculating the physical quantities throughout the entire nebula. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We propose a scheme to classify planetary nebulae (PNe) according to their departure from axisymmetric structure. We consider only departure along and near the equatorial plane, i.e. between the two sides perpendicular to the symmetry axis of the nebula. We consider six types of departure from axisymmetry: (1) PNe where the central star is not at the centre of the nebula; (2) PNe having one side brighter than the other; (3) PNe having unequal size or shape of the two sides; (4) PNe where the symmetry axis is bent, e.g. the two lobes in a bipolar PN are bent toward the same side; (5) PNe where the main departure from axisymmetry is in the outer regions, e.g. an outer arc; and (6) PNe that show no departure from axisymmetry, i.e. any departure, if it exists, is on scales smaller than the scale of blobs, filaments and other irregularities in the nebula. PNe that possess more than one type of departure are classified by the most prominent type. We discuss the connection between departure types and the physical mechanisms that may cause them, mainly resulting from the influence of a stellar binary companion. We find that ∼50 per cent of all PNe in the analysed sample possess large-scale departure from axisymmetry. This number is larger than that expected from the influence of binary companions, namely ∼25–30 per cent. We argue that this discrepancy comes from many PNe where the departure from axisymmetry, mainly unequal size, shape or intensity, results from the presence of long-lived and large (hot or cool) spots on the surface of their asymptotic giant branch progenitors. Such spots locally enhance the mass-loss rate, leading to a departure from axisymmetry, mainly near the equator, in the descendent PN.  相似文献   

17.
We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high-resolution radio, optical and infrared observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ∼2.5 and ∼2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio-peak luminosity because it is approximately three times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 Magellanic Clouds (MCs) PNe vary from very small (∼0.08 pc or 0.32 arcsec; SMP L47) to very large (∼1 pc or 4 arcsec; SMP L83). Their flux densities peak at different frequencies, suggesting that they may be in different stages of evolution. We briefly discuss mechanisms that may explain their unusually high radio-continuum flux densities. We argue that these detections may help solve the 'missing mass problem' in PNe whose central stars were originally  1–8 M  . We explore the possible link between ionized haloes ejected by the central stars in their late evolution and extended radio emission. Because of their higher than expected flux densities, we tentatively call this PNe (sub)sample –'Super PNe'.  相似文献   

18.
In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.  相似文献   

19.
20.
We obtained optical long-slit spectra of four planetary nebulae (PNe) with low-ionization pair of knots, namely He 1-1, IC 2149, KjPn 8 and NGC 7662.
These data allow us to derive the physical parameters and excitation of the pairs of knots, and those of higher ionization inner components of the nebulae, separately.
Our results are as follows. (1) The electron temperatures of the knots are within the range 9500–14 500 K, similar to the temperatures of the higher ionization rims/shells. (2) Typical knots' densities are 500–2000 cm−3. (3) Empirical densities of the inner rims/shells are higher than those of the pairs of knots, by up to a factor of 10. Theoretical predictions, at variance with the empirical results, suggest that knots should be denser than the inner regions, by at least a factor of 10. (4) Empirical and theoretical density contrasts can be reconciled if we assume that at least 90 per cent of the knots' gas is neutral (likely composed of dust and molecules). (5) By using the new Raga et al. shock modelling and diagnostic diagrams appropriated for spatially resolved PNe, we suggest that high-velocity shocked knots travelling in the photoionized outer regions of PNe can explain the emission of the pairs of knots analysed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号