首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Seasonal variations in Dustfall and its iron content over North China   总被引:2,自引:0,他引:2  
Extensive dustfall collections were carried out from April 2001 to May 2002 in North China. The highest level of dustfall occurred in the Gobi deserts and at the margins of sandy deserts in the region. The iron content in dustfall in North China varied from 0.6% to 6.0% and there was significant seasonal variation, which indicates the dust sources differed during the year. Although the iron content in dustfall in North China is higher in the Loess Plateau and arable lands and lower in the Gobi and sandy deserts, the total iron deposition was higher in the Gobi desert regions. If the fine particles (PM10) in dustfall in North China are the major contributors of dust transport to eastern China and western parts of the North Pacific, then the annual deposition rates of iron may have been underestimated in previous studies. Our analysis indicates that iron deposition may reach 1.38 × 10^3 to 2.43 × 10^3 kg km^-2 and that most iron deposition occurs in spring and summer. If the more-coarse fractions (PM50) are considered, deposition rates may reach 2.75 × 10^3 and 6.80 × 10^3 kg km^-2, which would represent a large source of iron deposition in eastern China and the western North Pacific.  相似文献   

2.
Seasonal variations of hydrological conditions in the area adjoining the southeastern coast of Sakhalin Island are described based on the analysis of monthly mean temperature and salinity obtained over standard oceanic sections Makarov-Cape Georgii and Cape Svobodny-the sea and from nine oceanic surveys. The Poronai River runoff that promotes the formation of a warm surface layer with low salinity largely influences the water area of Terpeniya Bay in the northern part of the area studied. In spring, these waters primarily spread southward along the coast; in summer, they flow southeastward, forming a weak vortex structure at 144° E. In the fall, major changes occur below 20 m, where waters of the cold intermediate layer are replaced by warmer waters (4–6°C) of low salinity connected with the Amur River runoff. The destruction of the CIL core near the shelf edge at depths of about 100 m resulting from the fall intensification of the East Sakhalin Current is pronounced in the southern, abyssal part of the region. The coastal area is covered by waters with salinity below 32‰ connected with the Amur River runoff. The volume of low-salinity waters coming through the Cape Svobodny-the sea section into the southern part of the Sea of Okhotsk is estimated at 3000 km3 taking into account instrumental measurements of flow rates.  相似文献   

3.
The strongest large-scale intraseasonal (30–110 day) sea surface temperature (SST) variations in austral summer in the tropics are found in the eastern Indian Ocean between Australia and Indonesia (North-Western Australian Basin, or NWAB). TMI and Argo observations indicate that the temperature signal (std. ~0.4 °C) is most prominent within the top 20 m. This temperature signal appears as a standing oscillation with a 40–50 day timescale within the NWAB, associated with ~40 Wm?2 net heat fluxes (primarily shortwave and latent) and ~0.02 Nm?2 wind stress perturbations. This signal is largely related to the Madden-Julian Oscillation. A slab ocean model with climatological observed mixed-layer depth and an ocean general circulation model both accurately reproduce the observed intraseasonal SST oscillations in the NWAB. Both indicate that most of the intraseasonal SST variations in the NWAB in austral winter are related to surface heat flux forcing, and that intraseasonal SST variations are largest in austral summer because the mixed-layer is shallow (~20 m) and thus more responsive during that season. The general circulation model indicates that entrainment cooling plays little role in intraseasonal SST variations. The larger intraseasonal SST variations in the NWAB as compared to the widely-studied thermocline-ridge of the Indian Ocean region is explained by the larger convective and air-sea heat flux perturbations in the NWAB.  相似文献   

4.
Rice-wheat (R-W) rotation systems are ubiquitous in South and East Asia, and play an important role in modulating the carbon cycle and climate. Long-term, continuous flux measurements help in better understanding the seasonal and interannual variation of the carbon budget over R-W rotation systems. In this study, measurements of CO2 fluxes and meteorological variables over an R-W rotation system on the North China Plain from 2007 to 2010 were analyzed. To analyze the abiotic factors regulating Net Ecosystem Exchange (NEE), NEE was partitioned into gross primary production (GPP) and ecosystem respiration. Nighttime NEE or ecosystem respiration was controlled primarily by soil temperature, while daytime NEE was mainly determined by photosythetically active radiation (PAR). The responses of nighttime NEE to soil temperature and daytime NEE to light were closely associated with crop development and photosynthetic activity, respectively. Moreover, the interannual variation in GPP and NEE mainly depended on precipitation and PAR. Overall, NEE was negative on the annual scale and the rotation system behaved as a carbon sink of 982 g C m-2 per year over the three years. The winter wheat field took up more CO2 than the rice paddy during the longer growing season, while the daily NEE for wheat and rice were -2.35 and -3.96 g C m-2, respectively. After the grain harvest was subtracted from the NEE, the winter wheat field became a moderately strong carbon sink of 251-334 g C m-2 per season, whereas the rice paddy switched to a weak carbon sink of 107-132 per season.  相似文献   

5.
Summary Seasonal variations of gravity wave characteristics are investigated using rawinsonde data observed at Pohang observatory, Korea (36°2′N, 129°23′E) during the one-year period of 1998. Analysis is carried out for two atmospheric layers representing the troposphere (2–9 km) and stratosphere (17–30 km). There exist clear seasonal variations in amplitudes of temperature and wind perturbations and wave energy in the stratosphere, with their maxima in wintertime and minima in summertime. A strong correlation is found between the wave activity and the strength of the jet stream, but there is no clear correlation between the wave activity and the vertical gradient of static stability. The intrinsic frequency and vertical and horizontal wavelengths of gravity waves in the stratosphere are 2f–3f, where f is the Coriolis parameter, and 2–3 km and 300–500 km, respectively. The intrinsic phase velocity directs westward in January and northeastward in July. The vertical flux of the stratospheric zonal momentum is mostly negative except in summertime with a maximum magnitude in January. Topography seems to be a major source of stratospheric gravity waves in wintertime. Convection can be a source of gravity waves in summertime, but it is required to know convective sources at nearby stations, due to their intermittency and locations relative to floating balloons.  相似文献   

6.
Previous studies have shown that wind-forced baroclinic Rossby waves can capture a large portion of low-frequency steric sea surface height (SSH) variations in the North Atlantic. In this paper, the classical wind-driven Rossby wave model derived in a 1.5-layer ocean is extended to include surface buoyancy forcing, and the new model is then used to assess the contribution from buoyancy-forced Rossby waves to low-frequency North Atlantic steric SSH variations. Buoyancy forcing is determined from surface heating as freshwater fluxes are negligible. It is found that buoyancy-forced Rossby waves are important in only a few regions belonging to the subtropical-to-midlatitude and eastern subpolar North Atlantic. In these regions, the new Rossby wave model accounts for 25%–70% of low-frequency steric SSH variations. Furthermore, as part of the analysis it is also shown that a simple static model driven by local surface heat fluxes captures 60%–75% of low-frequency steric SSH variations in the Labrador Sea, which is a region where Rossby waves are found to have no influence on the steric SSH.  相似文献   

7.
The index of inertance of surface temperature variations is proposed which supposedly reflects the damping effect of the ocean on the variations in atmospheric thermal conditions over the land. It is demonstrated that the climate variability and climate change are related to the index of inertance. Air temperature rose most intensively in the years of weak stabilizing effect of the ocean which restrains the climate warming. The general trend of the inertance weakening on the land in the second half of the 20th century led to the additional and more rapid warming and to the increase in climate extremity on the continents.  相似文献   

8.
Theoretical and Applied Climatology - Seasonal prevailing surface winds are analyzed in the territory of Northern Serbia, using observational data from 12 meteorological stations over several...  相似文献   

9.
Summary  The carbon dioxide exchange in arctic and subarctic terrestrial ecosystems has been measured using the eddy-covariance method at sites representing the latitudinal and longitudinal extremes of the European Arctic sea areas as part of the Land Arctic Physical Processes (LAPP) project. The sites include two fen (Kaamanen and Kevo) and one mountain birch ecosystems in subarctic northern Finland (69° N); fen, heathland, and snowbed willow ecosystems in northeastern Greenland (74° N); and a polar semidesert site in Svalbard (79° N). The measurement results, which are given as weekly average diurnal cycles, show the striking seasonal development of the net CO2 fluxes. The seasonal periods important for the net CO2 fluxes, i.e. winter, thaw, pre-leaf, summer, and autumn can be identified from measurements of the physical environment, such as temperature, albedo, and greenness. During the late winter period continuous efflux is observed at the permafrost-free Kaamanen site. At the permafrost sites, efflux begins during the thaw period, which lasts about 3–5 weeks, in contrast to the Kaamanen site where efflux continues at the same rate as during the winter. Seasonal efflux maximum is during the pre-leaf period, which lasts about 2–5 weeks. The summer period lasts 6 weeks in NE Greenland but 10–14 weeks in northern Finland. During a high summer week, the mountain birch ecosystem had the highest gross photosynthetic capacity, GP max, followed by the fen ecosystems. The polar semidesert ecosystem had the lowest GP max. By the middle of August, noon uptake fluxes start to decrease as the solar elevation angle decreases and senescence begins within the vascular plants. At the end of the autumn period, which lasts 2–5 weeks, topsoil begins to freeze at the end of August in Svalbard; at the end of September at sites in eastern Greenland; and one month later at sites in northern Finland. Received March 1, 2000 Revised October 2, 2000  相似文献   

10.
采用1958年1月—2001年12月ECMWF ERA-40的10m风场资料,以及由该风场资料驱动WAVEWATCHⅢ得到的北印度洋—南海海域44a的海浪场资料,通过EOF分析、正交小波分析和M-K检测方法,分析了北印度洋—南海海域海面风场和有效波高的年代际变化特征。结果表明:北印度洋—南海海域存在3个大风、大浪区,其中亚丁湾以东洋面风力最强,有效波高最高;表面风场和有效波高存在35、15和3a的主周期变化,并自20世纪70年代中期以来,年平均风场和有效波高均存在明显增强趋势,1977年为突变起始年;年平均海表10m风速和有效波高随时间增大主要是由冬季和春季海表10m风速和有效波高随时间增大引起的;冬、秋季海面风场与有效波高的年际、年代际变化周期较一致,冬季以35~40a的周期为主,秋季以11~12a的周期为主。  相似文献   

11.
12.
Previous research has shown that most significant interannual variability of the net radiation balance is confined to a few distinct centers at low latitudes. North Africa is the only continental region within this zone which undergoes large amplitude interannual changes. This two part study focuses on the origins of the North African radiation balance variability, its relationship to precipitation processes, and the potential impact of confined regional variations on global climate. Part I investigates how net radiation perturbations can be decomposed into surface induced components and cloud induced components. The methodology is based on lengthy time series of satellite derived radiation budget and cloudiness quantities in conjunction with a technique derived from the Cess et al. (1982) study involving the formulation of a climate sensitivity parameter.The analysis shows that a significant portion of the interannual modulation of net radiation over North Africa arises from surface influences. Furthermore it appears that a significant part of the mechanism inducing these changes takes place through precipitation controls on the land surface. Cloud induced anomalies are important but represent the weaker of the two processes. Since North Africa is the sink portion of a large scale, cross-meridional energy transport dipole counterpoised to a large scale energy source in the Western Pacific, it is of fundamental importance on the global scale to determine the origins of net radiation variations within the sink.The analysis indicates three dominant time scales associated with precipitation feedback on the net radiation anomalies; a slow manifold of approximately 20 months; a fast manifold of 2.5 months; and a semi-annual manifold. These time scales underlie the surface and cloud forced net radiation anomalies in which southern, central, and northern latitude sectors of North Africa exhibit their own distinct modes of control on the regional radiation balance.  相似文献   

13.
Coherent structures in turbulent flow above a midlatitude deciduous forest are identified using a wavelet analysis technique. Coupling between motions above the canopy (z/h=1.5, whereh is canopy height) and within the canopy (z/h=0.6) are studied using composite velocity and temperature fields constructed from 85 hours of data. Data are classified into winter and summer cases, for both convective and stable conditions. Vertical velocity fluctuations are in phase at both observation levels. Horizontal motions associated with the structures within the canopy lead those above the canopy, and linear analysis indicates that the horizontal motions deep in the canopy should lead the vertical motions by 90°. On average, coherent structures are responsible for only about 40% of overall turbulent heat and momentum fluxes, much less than previously reported. However, our large data set reveals that this flux fraction comes from a wide distribution that includes much higher fractions in its upper extremes. The separation distanceL s between adjacent coherent structures, 6–10h, is comparable to that obtained in previous observations over short canopies and in the laboratory. Changes in separation between the summer and winter (leafless) conditions are consistent withL s being determined by a local horizontal wind shear scale.  相似文献   

14.
Annual surface temperature variations, 1602 to 1961, averaged over 77 United States and southwestern Canadian stations, are reconstructed from 65 aridsite tree-ring chronologies of western North America. Annual sea-level pressure reconstructions averaged over the North Pacific sector including North America and eastern Asia are inversely related to the temperature variations. Both the instrumental and reconstructed North American temperature averages are well correlated with Northern Hemisphere average temperatures during the early 20th-century warming but the correlation diminishes after the mid-1940s. The 1918 to 1947 interval is reconstructed to have been the warmest and 1877 to 1906 the coolest. The correlations between the temperature record and other high resolution temperature series from the Northern Hemisphere are generally insignificant. However, significant correlations are noted for certain 30-yr time periods. North American temperatures appear to have been out of phase with temperatures in Europe during the late 18th and early 19th centuries. Significant variations in the 30-yr mean temperatures are noted in several of the North American series. The warming early in the 20th century is the most marked followed by warming from 1717 to 1723 and from 1850 to 1866. Significant cooling occurs from 1810 to 1821 and from 1659 to 1669.  相似文献   

15.
Although the isotopic composition of precipitation is widely used in global climate change studies, use of water vapour isotopes is considerably more limited. Here we present the results from 9 yr of atmospheric vapour measurements in the Eastern Mediterranean, at a site in Israel. The measurements show a strong mean seasonal cycle of about 4‰ in 18O (peaking around July). This seasonality could not be adequately explained by changes in surface interactions or in air mass trajectories, as usually invoked for variations in local precipitation. We could explain this cycle only as a combination of three components: (1) rainout effects; (2) temperature and relative humidity control of the initial vapour and (3) seasonal variations in the vertical mixing across the top of the planetary boundary layer. This last component is emphasized in the current study, and it was shown to be a significant factor in the seasonal cycle features. The measurements were also compared with an isotope-enabled GCM (CAM2) run, which exhibited a markedly different seasonal cycle. Such comparisons with vapour isotopes data could help in constraining models better.  相似文献   

16.
针对极端温度MOS (Model Output Statistics) 预报中的季节划分问题,通过聚类分析方法以华北地区为例进行试验,在此基础上提出一种新的MOS温度预报方程季节分类方式:2月11日—3月20日和11月5日—12月4日定义为早春晚秋类,5月1日—9月30日定义为夏季类,3月21日—4月30日和10月1日—11月4日定义为晚春早秋类,12月5日—2月10日定义为冬季类。由于上述季节分类与传统的季节划分在3—5月和9—11月时间段存在较大差异,因此利用2009年进行试报,就两种时间分类进行对比分析。检验结果表明:利用新分类方法制作的极端温度MOS预报的整体效果好于传统的季节划分得到MOS极端温度预报效果,说明新的分类方式更适合于极端温度MOS预报。  相似文献   

17.
Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities.Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of 13C concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.  相似文献   

18.
天山北坡牧草生长季节土壤水分变化特征探讨   总被引:1,自引:0,他引:1  
通过对牧业气象试验站多年土壤水分观测资料的整理分析,认为夏季土壤水分比较丰富,其随深度分布呈降水型;春季土壤水分含量最少,秋季次之,其随深度分布呈蒸发、降水型。旬土壤水分含量在牧草生长期呈两峰三谷型。  相似文献   

19.
20.
公颖  杨阳  周小珊  董博 《暴雨灾害》2017,116(2):125-131

利用长时序(1961—2012年)的辽宁省夏季逐小时降水观测资料、2008—2013年CMORPH(中国自动站与NOAA气候预报中心morphing技术融合的逐时降水量0.1°网格数据)夏季逐小时降水资料、2000—2012年NCEP再分析资料以及高分辨率中小尺度数值模式WRFV3.3.1,对辽宁暴雨日变化规律进行了统计,并对其形成机理进行了分析和数值试验,结果表明:(1)辽宁省内陆地区基本为午后降水(暴雨)峰值,沿海地区基本为午前降水(暴雨)峰值,内陆平原站点凌晨到午前有次峰现象发生。(2)辽宁降水日变化特征与地理环境关系密切,内陆地区午后降水峰值、沿海地区午前降水峰值的主要原因是大兴安岭—内蒙古高原山区、东北平原、海洋三大地形热力性质的不同而诱发的局地环流日变化。内陆地区午后—夜间降水峰值由山地—平原局地环流上升支诱发,沿海地区凌晨—午前降水峰值现象由海—陆局地环流上升支诱发。(3)对内陆站点做去除大地形试验的数值模拟试验表明,去除大地形对于日累积降水量无明显影响,但对内陆站点的降水日变化有影响,去掉地形后,内陆站点降水峰值发生时间基本均明显提前至正午前后且峰值雨量均明显减小;沿海站点做海洋改陆地数值模拟试验结果表明,海洋改陆地试验对于日累积降水量也无明显影响,但对沿海站点降水日变化有影响,海洋改为陆地后,沿海站点降水峰值由午前变为午后至夜间。数值试验结果进一步说明山地、海洋大地形是诱发辽宁降水日变化规律形成的主要原因。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号