首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The distribution of Ba and Sr in deep-seated xenoliths, mantle alkaline melts, and their minerals from the Pamirs and Tien Shan and some other regions was considered. In contrast to ordinary magmatic series, the mantle rocks show a correlation of Sr with both Ca and alkalis. The most extensive accumulation of Ba and Sr in the upper mantle occurs during the processes of mantle metasomatism and melting of metasomatized materials. The influx of these elements is probably related to ultradeep plume-type sources. Ba and Sr were transported from the mantle into the crust by both high-temperature alkaline melts and low-temperature hydrothermal solutions. It is supposed that the late Alpine celestite deposits of the huge Sr province of the Mediter-ranean belt are of mantle origin. Geochemical provinces show distinctive concentrations and proportions of Ba and Sr in mantle-derived alkaline basic rocks, metasomatic rocks, and their minerals. The type of Ba-Sr relations is inherited by crustal rocks.  相似文献   

5.
Aizen  V 《冰川冻土》1993,15(4):517-534
在前苏联中天山进行了两年的野外调查研究,利用所得资料,建立一个计算亚大陆型山地冰川物质-能量交换和冰川径流的模型。找出了控制这一地区现代冰川作用的主要冰川气候因素并使之定量化。计算了一地区冰川在全球水循环中的作用以及输入这一封闭水系的水气,即贮存在这一地区的水分占大气总水汽通量的份额。发现全球大气循环变化同冰川作用的相互影响。此外,重建了这一地区冰川300年来物质平衡各分量。  相似文献   

6.
Lake Issyk-Kul occupies a large Late Mesozoic–Cenozoic intramontane basin between the mountain ranges of the Northern Kyrgyz Tien Shan. These ranges are often composed of granitoid basement that forms part of a complex mosaic assemblage of microcontinents and volcanic arcs. Several granites from the Terskey, Kungey, Trans-Ili and Zhetyzhol Ranges were dated with the zircon U/Pb method (SHRIMP, LA-ICP-MS) and yield concordant Late Ordovician–Silurian (~ 456–420 Ma) emplacement ages. These constrain the “Caledonian” accretion history of the Northern Kyrgyz Tien Shan in the amalgamated Palaeo-Kazakhstan continent. The ancestral Tien Shan orogen assembled in the Early Permian when final closure of the Turkestan Ocean ensued collision of Palaeo-Kazakhstan and Tarim. A Late Palaeozoic structural basement fabric formed and Middle–Late Permian post-collisional magmatism added to crustal growth of the Tien Shan. Permo‐Triassic cooling (~ 300–220 Ma) of the ancestral Tien Shan was unraveled using 40Ar/39Ar K-feldspar and titanite fission-track (FT) thermochronology on the Issyk-Kul granitoids. Apatite thermochronology (FT and U–Th–Sm/He) applied to the broader Issyk-Kul region elucidates the Meso-Cenozoic thermo-tectonic evolution and constrains several tectonic reactivation episodes in the Jurassic, Cretaceous and Cenozoic. Exhumation of the studied units occurred during a protracted period of intracontinental orogenesis, linked to far-field effects of Late Jurassic–Cretaceous accretion of peri-Gondwanan blocks from the Tethyan realm to Eurasian. Following a subsequent period of stability and peneplanation, incipient building of the modern Tien Shan orogen in Northern Kyrgyzstan started in the Oligocene according to our data. Intense basement cooling in distinct reactivated and fault-controlled sections of the Trans-Ili and Terskey Ranges finally pinpoint important Miocene–Pliocene (~ 22–5 Ma) exhumation of the Issyk-Kul basement. Late Cenozoic formation of the Tien Shan is associated with ongoing indentation of India into Eurasia and is a quintessential driving force for the reactivation of the entire Central Asian Orogenic Belt.  相似文献   

7.
The extended Saryarka and Shyngyz-North Tien Shan volcanic belts that underwent secondary deformation are traced in the Caledonides of Kazakhstan and the North Tien Shan. These belts are composed of igneous rocks pertaining to Early Paleozoic island-arc systems of various types and the conjugated basins with oceanic crust. The Saryarka volcanic belt has a complex fold-nappe structure formed in the middle Arenigian-middle Llanvirnian as a result of the tectonic juxtaposition of Early-Middle Cambrian and Late Cambrian-Early Ordovician complexes of ensimatic island arcs and basins with oceanic crust. The Shyngyz-North Tien Shan volcanic belt is characterized by a rather simple fold structure and consists of Middle-Late Ordovician volcanic and plutonic associations of ensialic island arcs developing on heterogeneous basement, which is composed of complexes belonging to the Saryarka belt and Precambrian sialic massifs. The structure and isotopic composition of the Paleozoic igneous complexes provide evidence for the heterogeneous structure of the continental crust in various segments of the Kazakh Caledonides. The upper crust of the Shyngyz segment consists of Early Paleozoic island-arc complexes and basins with oceanic crust related to the Saryarka and Shyngyz-North Tien Shan volcanic belts in combination with Middle and Late Paleozoic continental igneous rocks. The deep crustal units of this segment are dominated by mafic rocks of Early Paleozoic suprasubduction complexes. The upper continental crust of the Stepnyak segment is composed of Middle-Late Ordovician island-arc complexes of the Shyngyz-North Tien Shan volcanic belt and Early Ordovician rift-related volcanics. The middle crustal units are composed of Riphean, Paleoproterozoic, and probably Archean sialic rocks, whereas the lower crustal units are composed of Neoproterozoic mafic rocks.  相似文献   

8.
Doklady Earth Sciences - New results of a detailed study of the deep structure of the Central Tien Shan along the Son-Kul magnetotelluric (MT) profile crossing the Son-Kul Lake are reported. Based...  相似文献   

9.
The results of numerical modelling of deformation of the Earth’s crust along the Tarim–Altai profile caused by the force of gravity and lateral compression using the approximate two-dimensional model of the elastoplastic transition are presented. The conditions of the formation of mountains and their roots were determined taking into account some geological and geophysical parameters.  相似文献   

10.
Doklady Earth Sciences - This paper analyzes the rose diagrams of the directions of 439 faults of the Variscian province, 476 faults of the Caledonian province, and 603 presently active faults of...  相似文献   

11.
We demonstrate that the Miocene alkali granites of Yemen which emplaced along the Great Escarpment are contemporaneous with the stretching of the southern Red Sea continental crust. There is a gradient of Miocene extension towards the granites as well as a change of the geometry of tilted blocks around them. Geometrically, most of these granites seem to be emplaced passively in the necked areas of a stretched continental crust. These necked areas correspond to previous syn-plume Oligocene NNW–SSE to N–S trending areas of localized extension marked by basaltic dyke swarms. These early extensional areas were associated with the emplacement of the flood basalt volcanic pile and were probably localized over large basement discontinuities.  相似文献   

12.
Three new Middle–Late Ordovician and two new Early Carboniferous paleomagnetic poles have been obtained from the North Tien Shan Zone (NTZ) of the Ural–Mongol belt in Kyrgyzstan and Kazakhstan. Paleolatitudes for the Carboniferous are unambiguously northerly and average 15.5°N, whereas the Ordovician paleolatitudes (6°, 9°, and 9°) are inferred to be southerly, given that a very large (180°) rotation of the NTZ would be necessary during the middle Paleozoic if the other polarity option was chosen. Thus, the NTZ drifted northward during much of the Paleozoic; east–west drift cannot be determined, as is well known, from paleomagnetic data. In addition, detailed thermal demagnetization analysis reveals two overprints, one of recent age and the other of Permian age, which is a time of strong deformation in the NTZ. The paleolatitude of the combined Permian overprint is 30.5+2°N. The paleolatitudes collectively track those predicted for the area by extrapolation from Baltica very well, but are different from those of Siberia for Ordovician times. This finding is compatible with Sengör and Natal'in's [Sengör, A.M.C., Natal'in, B.A., 1996. Paleotectonics of Asia: fragments of a synthesis. In: Yin A., Harrison, M. (Eds.), The Tectonic Evolution of Asia. Cambridge Univ. Press, Cambridge, pp. 486–640] model of tectonic evolution of the Ural–Mongol belt and disagrees with the models of other researchers. Declinations of the Ordovician and Early Carboniferous results range from northwesterly to northeasterly, and are clearly affected by local relative rotations, which seem characteristic for the entire NTZ, because the Permian overprint declinations also show such a spread. Apparently, the important latest Paleozoic–Triassic deformation involved shear zone-related rotations as well as folding and significant granitic intrusions.  相似文献   

13.
Cenozoic deformation within the Tien Shan of central Asia has accommodated part of the post-collisional indentation of the Indian plate into Asia. Within the Urumgi—Korla region of the Chinese Tien Shan this occurred dominantly on thrusts, with secondary strike-slip faulting. The gross pattern of deformation is of moderate to steeply dipping thrusts that have overthrust foreland basins to the north and south of the range, the Junggar and Tarim basins, respectively. Smaller foreland basins lie within the margins of the range itself (Turfan, Chai Wo Pu, Korla and Qumishi basins); these lie in the footwalls of local thrust systems. Both the Turfan and the Korla basins contain major thrusts within them; they are complex foreland basins. Deformation has progressively affected regions further into the interior of the Junggar Basin, and propagated into the interiors of the intermontane basins. No unidirectional deformation front has passed across the Tien Shan in the Neogene and Quaternary. An Oligocene unconformity may indicate the time of the onset of the Cenozoic deformation, but most of the Cenozoic molasse has been deposited after the Palaeogene. The rate of deposition in basins next to the uplifted ranges has increased since the onset of deformation. There has been at least about 80 km of Cenozoic shortening across this part of the Tien Shan. Cenozoic shortening is greater in sections of the range further west; these are nearer to the northern margin of the Indian indenter. Cenozoic compression has reactivated structures created by the two late Palaeozoic collisions that created the ancestral Tien Shan. These Palaeozoic structures have exerted a strong control over the style and location of the Cenozoic deformation.  相似文献   

14.
The main differences and similarities between the tectonic features of the Urals and the Tien Shan are considered. In the Neoproterozoic and Early and Middle Paleozoic, the Ural and Turkestan oceanic basins were parts of one oceanic domain, with several distinct regions in which tectonic events took different courses. The Baltic continental margin of the Ural paleoocean was active, whereas the Tarim-Alay margin of the Turkestan ocean, similar in position, was passive. The opposite continental margin in the Urals is known beginning from the Devonian as the Kazakh-Kyrgyz paleocontinent. In the Tien Shan, a similar margin developed until the Late Ordovician as the Syr Darya block with the ancient continental crust. In the Silurian, this block became a part of the Kazakh-Kyrgyz paleocontinent. The internal structures of the Ural and Turkestan paleooceans were different. The East Ural microcontinent occurred in the Ural paleoocean during the Early and Middle Paleozoic. No microcontinents are established in the Turkestan oceanic basin. Volcanic arcs in the Ural paleoocean were formed in the Vendian (Ediacarian), at the Ordovician-Silurian boundary, and in the Devonian largely along the Baltic margin at different distances from its edge. In the Turkestan paleoocean, a volcanic arc probably existed in the Ordovician at its Syr Darya margin, i.e., on the other side of the ocean in comparison with the Urals. The subduction of the Turkestan oceanic crust developed with interruptions always in the same direction. The evolution of subduction in the Urals was more complicated. The island arc-continent collision occurred here in the Late Devonian-Early Carboniferous; the continent-continent collision took place in the Moscovian simultaneously with the same process in the Tien Shan. The deepwater flysch basins induced by collision appeared at the Baltic margin in the Famennian and Visean, whereas in the Bashkirian and Moscovian they appeared at the Alay-Tarim margin. In the Devonian and Early Carboniferous, the Ural and Turkestan paleooceans had a common active margin along the Kazakh-Kyrgyz paleocontinent. The sudduction of the oceanic crust beneath this paleocontinent in both the Urals and the Tien Shan started, recommenced after interruptions, and finally ceased synchronously. In the South Ural segment, the Early Carboniferous subduction developed beneath both Baltica and the Kazakh-Kyrgyz paleocontinent, whereas in the Tien Shan, it occurred only beneath the latter paleocontinent. A divergent nappe-fold orogen was formed in the Urals as a result of collision of the Kazakh-Kyrgyz paleocontinent with the Baltic and Alay-Tarim paleocontinents, whereas a unilateral nappe-fold orogen arose in the Tien Shan. The growth of the high divergent orogen brought about the appearance of the Ural Foredeep filled with molasse beginning from the Kungurian. In the Tien Shan, a similar foredeep was not developed; a granitic axis similar to the main granitic axis in the Urals was not formed in the Tien Shan either.  相似文献   

15.
Geodynamics of late Paleozoic magmatism in the Tien Shan and its framework   总被引:1,自引:0,他引:1  
The Devonian-Permian history of magmatic activity in the Tien Shan and its framework has been considered using new isotopic datings. It has been shown that the intensity of magmatism and composition of igneous rocks are controlled by interaction of the local thermal upper mantle state (plumes) and dynamics of the lithosphere on a broader regional scale (plate motion). The Kazakhstan paleocontinent, which partly included the present-day Tien Shan and Kyzylkum, was formed in the Late Ordovician-Early Silurian as a result of amalgamation of ancient continental masses and island arcs. In the Early Devonian, heating of the mantle resulted in the within-plate basaltic volcanism in the southern framework of the Kazakhstan paleocontinent (Turkestan paleoocean) and development of suprasubduction magmatism over an extensive area at its margin. In the Middle-Late Devonian, the margins of the Turkestan paleoocean were passive; the area of within-plate oceanic magmatism shifted eastward, and the active margin was retained at the junction with the Balkhash-Junggar paleoocean. A new period of active magmatism was induced by an overall shortening of the region under the settings of plate convergence. The process started in the Early Carboniferous at the Junggar-Balkhash margin of the Kazakhstan paleocontinent and the southern (Paleotethian) margin of the Karakum-Tajik paleocontinent. In the Late Carboniferous, magmatism developed along the northern boundary of the Turkestan paleoocean, which was closing between them. The disappearance of deepwater oceanic basins by the end of the Carboniferous was accompanied by collisional granitic magmatism, which inherited the paleolocations of subduction zones. Postcollision magmatism fell in the Early Permian with a peak at 280 Ma ago. In contrast to Late Carboniferous granitic rocks, the localization of Early Permian granitoids is more independent of collision sutures. The magmatism of this time comprises: (1) continuation of the suprasubduction process (I-granites, etc.) with transition to the bimodal type in the Tien Shan segment of the Kazakhstan paleocontinent that formed; (2) superposition of A-granites on the outer Hercynides and foredeep at the margin of the Tarim paleocontinent (Kokshaal-Halyktau) and emplacement of various granitoids (I, S, and A types, up to alkali syenite) in the linear Kyzylkum-Alay Orogen; and (3) within-plate basalts and alkaline intrusions in the Tarim paleocontinent. Synchronism of the maximum manifestation and atypical combination of igneous rock associations with spreading of magmatism over the foreland can be readily explained by the effect of the Tarim plume on the lithosphere. Having reached maximum intensity by the Early Permian, this plume could have imparted a more distinct thermal expression to collision. The localization of granitoids in the upper crust was controlled by postcollision regional strike-slip faults and antiforms at the last stage of Paleozoic convergence.  相似文献   

16.
A comprehensive review of new data on geology and geochronology of Precambrian terranes in the western Central Asian Orogenic Belt reveals new insights into its evolution. At the present surface, these terranes mostly consist of Meso- to Neoproterozoic sedimentary, magmatic and metamorphic assemblages, with insignificant Paleoproterozoic rocks. Archean material is represented exclusively by detrital and xenocrystic zircons in younger strata. Meso- to Neoproterozoic felsic magmatic rocks were mostly sourced from Neoarchean and Paleoproterozoic continental crust, indicating its reworking and potential wider presence at deeper crustal levels. Most Meso- to Neoproterozoic assemblages are of intraplate origin. The supra-subduction assemblages of Neoproterozoic and Mesoproterozoic ages are of limited extent.We propose to recognize the Issedonian and Ulutau-Moyunkum groups of terranes, separated by early Paleozoic Z-shaped ophiolitic suture, based on their different tectono-magmatic evolution in the Mesoproterozoic and Neoproterozoic. Distinctly different are the Mesoproterozoic and early Neoproterozoic assemblages, with lithological variations at the beginning of the late Neoproterozoic and practically no differences at the end of the Neoproterozoic.The Issedonian group of terranes could be part of a Mesoproterozoic (ca. 1100 Ma) orogen between the Siberian, North China and Laurentian cratons. The pre-Mesoproterozoic crust of these terranes was completely reworked during the younger events. The Ulutau-Moyunkum group of terranes appear to be lithologically and geochronologically similar to the Tarim craton. Both the Issedonian and Ulutau-Moyunkum groups of terranes were metamorphosed during the Ulutau-Moyunkum event at 700 ± 25 Ma.The breakup into currently mappable Precambrian terranes took place during end-Ediacaran to early Paleozoic times after opening of oceanic basins, whose relics are preserved in numerous Paleozoic ophiolitic sutures.  相似文献   

17.
The Altaid orogen was formed by aggregation of Paleozoic subduction–accretion complexes and Precambrian basement blocks between the Late Proterozoic and the Early Mesozoic. Because the Altaids are the site of abundant granitic plutonism and host some of the largest gold deposits in the world, understanding their formation has important implications on the comprehension of Phanerozoic crustal growth and metallogeny. In this study, we present the first extensive lead isotope data on magmatic and metasedimentary rocks as well as ore deposits of the southern part of the Altaids, including the Tien Shan (Tianshan) and southern Altay (Altai) orogenic belts. Our results show that each terrane investigated within the Tien Shan and southern Altay is characterized by a distinct Pb isotope signature and that there is a SW–NE Pb isotope gradient suggesting a progressive transition from a continental crust environment in the West (the Kyzylkum and Kokshaal segments of the Southern Tien Shan) to an almost 100% juvenile (MORB-type mantle-derived) crust environment in the East (Altay). The Pb isotope signatures of the studied ore deposits follow closely those of magmatic and metasedimentary rocks of the host terranes, thus supporting the validity of lead isotopes to discriminate terranes. Whereas this apparently suggests that no unique reservoir has been responsible for the huge gold concentration in this region, masking of a preferential Pb-poor Au-bearing reservoir by mixing with Pb-rich crustal reservoirs during the mineralizing events cannot be excluded.  相似文献   

18.
The tectonic and geodynamic consequences of the collision between Hindustan and Eurasia are considered in the paper. The tectonic evolution and deformation of Tibet and the Tien Shan in the Late Cenozoic is described on the basis of geological, geophysical, and geodetic data. The factual data and their interpretation, which shed light on the kinematics of the tectonic processes in the lithosphere and the geodynamics of the interaction between the Tien Shan, Tarim, and Tibet are discussed. A geodynamic model of their interaction is proposed.  相似文献   

19.
High-density array MT soundings of the crust in the seismically active northern Tien Shan were performed using Phoenix MTU-5 stations in the Bishkek Geodynamic Polygon, at the junction of the Chu basin and the Kyrgyz Range. The MT transfer functions were determined to an accuracy of 1–2% (amplitude) and about 0.5–0.8 deg (phase) in most of 145 soundings. Preliminary analysis of the collected data aimed at estimating the geoelectrical dimensionality. The Bahr decomposition analysis indicated the presence of local 3D structures in the crust of the area superposed on the regional 2D structure.  相似文献   

20.
The Chinese Tien Shan range is a Palaeozoic orogenic belt which contains two collision zones. The older, southern collision accreted a north-facing passive continental margin on the north side of the Tarim Block to an active continental margin on the south side of an elongate continental tract, the Central Tien Shan. Collision occurred along the Qinbulak-Qawabulak Fault (Southern Tien Shan suture). The time of the collision is poorly constrained, but was probably in in the Late Devonian-Early Carboniferous. We propose this age because of a major disconformity at this time along the north side of the Tarim Block, and because the Youshugou ophiolite is imbricated with Middle Devonian sediments. A younger, probably Late Carboniferous-Early Permian collision along the North Tien Shan Fault (Northern Tien Shan suture) accreted the northern side of the Central Tien Shan to an island arc which lay to its north, the North Tien Shan arc. This collision is bracketed by the Middle Carboniferous termination of arc magmatism and the appearance of Late Carboniferous or Early Permian elastics in a foreland basin developed over the extinct arc. Thrust sheets generated by the collision are proposed as the tectonic load responsible for the subsidence of this basin. Post-collisional, but Palaeozoic, dextral shear occurred along the northern suture zone, this was accompanied by the intrusion of basic and acidic magmas in the Central Tien Shan. Late Palaeozoic basic igneous rocks from all three lithospheric blocks represented in the Tien Shan possess chemical characteristics associated with generation in supra-subduction zone environments, even though many post-date one or both collisions. Rocks from each block also possess distinctive trace element chemistries, which supports the three-fold structural division of the orogenic belt. It is unclear whether the chemical differences represent different source characteristics, or are due to different episodes of magmatism being juxtaposed by later dextral strike-slip fault motions. Because the southern collision zone in the Tien Shan is the older of the two, the Tarim Block sensu stricto collided not with the Eurasian landmass, but with a continental block which was itself separated from Eurasia by at least one ocean. The destruction of this ocean in Late Carboniferous-Early Permian times represented the final elimination of all oceanic basins from this part of central Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号