首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Russia, highly radioactive liquid wastes from recycling of spent fuel of nuclear reactors are solidified into Na–Al–P glass for underground storage. The properties of the matrix including the radionuclide fixation will change with time due to crystallization. This is supported by the results of study of the interaction between glassy matrices, products of their crystallization, and water. The concentration of Cs in a solution at the contact of a recrystallized sample increased by three orders of magnitude in comparison with an experiment with glass. This difference is nearly one order of magnitude for Sr, Ce, and Nd (simulators of actinides) and U due to their incorporation into phases with low solubility in water. Based on data on the compositional change of solutions after passing through filters of various diameters, it is concluded that Cs occurs in the dissolved state in runs with a glass and recrystallized matrix. At the same time, Sr, lanthanides, and U occur in the dissolved state and in the composition of colloids in runs with glass, and mostly in colloid particles after contact with the recrystallized sample. These results should be regarded for substantiation of safety for geological waste storage.  相似文献   

2.
地下咸水与水库水体交换过程中沉积物胶体释放规律   总被引:1,自引:0,他引:1  
李海明  马斌  李子琛  赵雪 《岩矿测试》2012,31(5):849-854
以天津滨海地区北大港水库为研究对象,采用室内柱试验,研究地下咸水与水库水体交换过程中不同位置沉积物胶体释放以及盐分释放/截留的动态特征,同时对沉积物胶体释放、盐分释放/截留机理进行了探讨。研究结果表明:水库不同位置地下咸水与水库水体交换过程中,盐分的归宿不同:接近水库入口处的沉积物能将盐分截留下来,而出水口沉积物却将盐分释放转移到水体。随孔隙体积数的增加,沉积物胶体累计释放量逐渐增加,入库口、库中心、出库口最大累计释放量分别为3.275 mg/g、0.386 mg/g和1.382 mg/g;胶体累计释放量随孔隙体积数的变化曲线符合直线型,胶体释放速率变化很小。盐分的释放或截留是沉积物颗粒的粒径、胶体含量、含盐量等多种因素作用的结果,水库水体与沉积物中的盐分处于动态平衡状态,当沉积物中含盐量高于平衡浓度时,其盐分会向水体中释放,同时吸附在胶体上的盐分也会随着胶体的释放而释放;反之,水体中的盐分会向沉积物中迁移被截留下来,沉积物粒径越小,越易吸附水中的盐分。胶体的释放规律可以用双电层理论得到很好的解释。  相似文献   

3.
《Applied Geochemistry》1995,10(3):285-306
Inflows of metal-rich, acidic water that drain from mine dumps and tailings piles in the Leadville, Colorado, area enter the non-acidic water in the upper Arkansas River. Hydrous iron oxides precipitate as colloids and move downstream in suspension, particularly downstream from California Gulch, which has been the major source of metal loads. The colloids influence the concentrations of metals dissolved in the water and the concentrations in bed sediments. To determine the role of colloids, samples of water, colloids, and fine-grained bed sediment were obtained at stream-gaging sites on the upper Arkansas River and at the mouths of major tributaries over a 250-km reach. Dissolved and colloidal metal concentrations in the water column were operationally defined using tangential-flow filtration through 0.001-pm membranes to separate the water and the colloids. Surface-extractable and total bed sediment metal concentrations were obtained on the <60-μm fraction of the bed sediment. The highest concentrations of metals in water, colloids, and bed sediments occurred just downstream from California Gulch. Iron dominated the colloid composition, but substantial concentrations of As, Cd, Cu, Mn, Pb, and Zn also occurred in the colloidal solids. The colloidal load decreased by one half in the first 50 km downstream from the mining inflows due to sedimentation of aggregated colloids to the streambed. Nevertheless, a substantial load of colloids was transported through the entire study reach to Pueblo Reservoir. Dissolved metals were dominated by Mn and Zn, and their concentrations remained relatively high throughout the 250-km reach. The composition of extractable and total metals in bed sediment for several kilometers downstream from California Gulch is similar to the composition of the colloids that settle to the bed. Substantial concentrations of Mn and Zn were extractable, which is consistent with sediment-water chemical reaction. Concentrations of Cd, Pb, and Zn in bed sediment clearly result from the influence of mining near Leadville. Concentrations of Fe and Cu in bed sediments are nearly equal to concentrations in colloids for about 10 km downstream from California Gulch. Farther downstream, concentrations of Fe and Cu in tributary sediments mask the signal of mining inflows. These results indicate that colloids indeed influence the occurrence and transport of metals in rivers affected by mining.  相似文献   

4.
The formation of colloids during the weathering of phyllite was investigated by exposing ground phyllite to Milli-Q water. Secondary mineral colloids of 101–102 nm were detected in significant concentrations. At pH of about 8.5, the solution concentration of these colloids reached up to 10 mg/L (however, acidification to pH 4.0 prevented the formation of the colloids). The mineralogical composition of the secondary mineral colloids is assumed to be a mixture of ferrihydrite, manganese oxyhydroxides, aluminosilicates, amorphous Al(OH)3 and gibbsite with possible additions of iron silicates and␣iron-alumino silicates. The colloids were stable over longer periods of time (at least several weeks), even in the presence of suspended ground rock. Direct formation of iron-containing secondary mineral colloids at the rock–water interface by the weathering of rock material is an alternative to the well-known mechanism of iron colloid formation in the bulk of water bodies by mixing of different waters or by aeration of anoxic waters. This direct mechanism is of relevance for colloid production during the weathering of freshly crushed rock in the unsaturated zone as for instance crushed rock in mine waste rock piles. Colloids produced by this mechanism, too, can influence the transport of contaminants such as actinides because these colloids have a large specific surface area and a high sorption affinity.  相似文献   

5.
《Applied Geochemistry》2001,16(14):1653-1662
Strontium-90 (90Sr) is one of the major radioactive contaminants found in DP Canyon at Los Alamos, New Mexico, USA. Radioactive surveys found that 90Sr is present in surface water and shallow alluvial groundwater environments in Los Alamos National laboratory (LANL). Colloids may influence the transport of this radionuclide in surface and groundwater environments in LANL. In this study, the authors investigated the sorption/desorption behavior of radioactive Sr on Ca-montmorillonite and silica colloids, and the effect of ionic strength of water on the sorption of Sr. Laboratory batch sorption experiments were conducted using 85Sr as a surrogate for 90Sr. Groundwater, collected from Well LAUZ-1 at DP Canyon and from Well J-13 at Yucca Mountain, Nevada, and deionized water, were used. The results show that 92–100% of the 85Sr was rapidly adsorbed onto Ca-montmorillonite colloids in all three waters. Adsorption of 85Sr onto silica colloids varied among the three waters. The ionic strength and Ca2+ concentration in groundwater significantly influence the adsorption of 85Sr onto silica colloids. Desorption of 85Sr from Ca-montmorillonite colloids is slower than from silica colloids. Desorption of 85Sr from silica colloids was faster in LAUZ-1 groundwater than in J-13 groundwater and deionized water. The results suggest that clay and silica colloids may facilitate the transport of Sr along potential flowpaths from DP Canyon to Los Alamos Canyon.  相似文献   

6.
《Applied Geochemistry》1999,14(5):635-653
Fully radioactive and non-radioactive Savannah River Laboratory (SRL) borosilicate glasses were reacted with water under static conditions at glass surface area to leachant volume (S/V) ratios of 340 m−1, 2000 m−1, and 20 000 m−1 for times varying from several days to several years at 90°C. A radioactive SRL 200 glass was also reacted under intermittent flow conditions at 90°C. Colloidal and suspended glass alteration particles present in the leachates of these tests were examined with analytical transmission electron microscopy (AEM). The major colloidal phase identified in all tests was partially crystalline dioctahedral smectite clay. At 20 000 m−1, the clay colloids flocculate and sediment, becoming attached to available surfaces when the ionic strength reached a value of about 0.3–0.5 mol·kg−1. Clay colloids remained stable in the solution for the duration of the experiment in tests conducted at S/V values of 2000 m−1 and 340 m−1. Calcite, dolomite, and transition metal oxide particles were more common in the intermittent flow tests but were also found in the static tests. Layered, Mn-bearing minerals, birnessite and asbolane, were found exclusively in the intermittent flow tests. Weeksite and a U-Ti phase were found exclusively in the static tests. Partially crystalline rare earth-bearing calcium phosphate colloids, structurally related to rhabdophane, were found in both types of tests. These particles exhibited a negative Ce anomaly. The affinity of phosphate for Pu was investigated through geochemical modeling. The results from this study and others were used to form a picture of colloidal development in the leachate from waste glass testing.  相似文献   

7.
《Applied Geochemistry》2004,19(1):119-135
Colloid-facilitated transport of contaminants could enhance the release rate of radionuclides from the cementitious near field of a repository for radioactive waste. In the current design of the planned Swiss repository for intermediate-level radioactive waste, a gas-permeable mortar is employed as backfill material for the engineered barrier. The main components of the material are hardened cement paste (HCP) and quartz aggregates. The chemical condition in the backfill mortar is controlled by the highly alkaline cement pore water present in the large pore space. The interaction of pore water with the quartz aggregates is expected to be the main source for colloids. Colloid transport is facilitated due to the high porosity of the backfill mortar. Batch-type studies have been performed to generate colloidal material in systems containing crushed backfill mortar or quartz in contact with artificial cement pore water (ACW) at pH 13.3. The chemical composition of the colloidal material corresponds to that of calcium silicate hydrates (CSH). Batch flocculation tests show that, after about 20 days reaction time, the concentration of the CSH-type colloids is typically below 0.1 mg l−1 due to reduced colloid stability in ACW. Uptake studies with Cs(I), Sr(II) and Th(IV) on a CSH phase (initial C:S ratio=1.09) have been carried out to assess the sorption properties of the colloidal material. The influence of uptake by colloids on radionuclide mobilisation is expressed in terms of sorption reduction on the immobile phase (HCP). Sorption reduction factors can be estimated on the assumption that the sorption properties of the colloidal material are either similar to those of the CSH phase or HCP, and that sorption is linear and reversible. A scaling factor accounts for the higher specific surface area of the colloidal material compared to the CSH phase and HCP. At colloid concentration levels typically encountered in highly alkaline cement pore waters, colloid-induced sorption reduction is predicted to be negligibly small even for strongly sorbing radionuclides, such as Th(IV). Thus, no significant impact of cementitious colloids on radionuclide mobilisation in the porous backfill mortar is anticipated.  相似文献   

8.
海绿石是一种富钾、富铁的含水层状铝硅酸盐矿物,在沉积学领域常被作为一种普遍的指相矿物。多年研究的结果表明,现代海绿石主要形成在慢速、弱还原的较深水环境中,而且还可以作为"凝缩段"的识别标志之一。天津蓟县剖面中元古界铁岭组第二段灰岩中的海绿石,产在高能叠层石岩礁之中,主要以胶体形式富集在叠层石和均一石的边界上,代表较为典型的原地海绿石;较高的氧化钾含量(大于8%)而显示出高成熟海绿石的特点。很明显,铁岭组二段灰岩中的原地高成熟海绿石,不但不能作为"凝缩段"的识别标志,而且也不是长时间地层间断的产物。由于形成在正常高能浅海环境,而且处于中元古代末期,与现代沉积中的海绿石存在较大的差异,可能代表了中元古代末期的正常浅海还处于含氧量不够充分的弱还原状态,最终使铁岭组灰岩中的海绿石成为前寒武纪海绿石产出的一个典型代表,也间接的表明了在漫长的地质历史演变过程中海绿石产出的多样性特点。  相似文献   

9.
A survey of U.S. east coast estuaries confirms that large-scale rapid removal of iron from river water is a general phenomenon during estuarine mixing. The river-borne ‘dissolved’ iron consists almost entirely of mixed iron oxide-organic matter colloids, of diameter less than 0.45 μm, stabilized by the dissolved organic matter. Precipitation occurs on mixing because the seawater cations neutralize the negatively charged iron-bearing colloids allowing flocculation. The process has been duplicated in laboratory experiments using both natural filtered and unfiltered river water and a synthetic colloidal goethite in 0.05 μm filtered water. The colloidal nature of the iron has been further confirmed by ultracentrifugation and ultrafiltration. A major consequence of the precipitation phenomena is to reduce the effective input of ‘dissolved’ iron to the ocean by about 90% of the primary river value, equivalent to a concentration of less than 1 μmol per liter of river water.  相似文献   

10.
Dolomite (CaMg(CO3)2) is one of the common rock-forming minerals in many geological media, in particular in clayey layers that are currently considered as potential host formations for a deep radioactive waste disposal facility. Magnesium in solution is one of the elements known to potentially enhance the alteration of nuclear glasses. The alteration of borosilicate glasses with dolomite as a Mg-bearing mineral source was investigated for 8 months in batch tests at 90 °C. Glass composition effects were investigated through two compositions (SiBNaAlCaZrO and SiBNaAlZrO) differing in their Ca content. The Ca-rich glass alteration is slightly enhanced in the presence of dolomite compared to the alteration observed in pure water. This greater alteration is explained by the precipitation of Mg silicate phases on the dolomite and glass surfaces. In contrast, the Ca-free glass alteration decreases in the presence of dolomite compared to the alteration observed in pure water. This behavior is explained by Ca incorporation in the amorphous layer (formed during glass alteration) coming from dolomite dissolution. Calcium acts as a layer reorganizer and limits glass alteration by reducing the diffusion of reactive species through the altered layer. Modeling was performed using the GRAAL model implemented within the CHESS/HYTEC geochemical code to discriminate and interpret the mechanisms involved in glass/dolomite interactions. Magnesium released by dolomite dissolution reacts with silica provided by glass alteration to form Mg silicates. This reaction leads to a pH decrease. The main mechanism controlling glass alteration is the ability of dolomite to dissolve. During the experiment the quantities of secondary phases formed were very small, but for longer time scales, this mechanism could supply sufficient Mg in solution to form large amounts of Mg silicates and sustain glass alteration. The ability of the GRAAL model to reproduce the concentrations of elements in solution and solid phases regardless of the amount of dolomite and the glass composition strongly supports the basic modeling hypothesis.  相似文献   

11.
河流中潜流交换研究进展   总被引:8,自引:1,他引:7       下载免费PDF全文
金光球  李凌 《水科学进展》2008,19(2):285-293
河水和地下水交换——潜流交换对溶质和污染物的归宿起着重要作用。潜流交换机理主要包括泵吸交换和冲淤交换。泵吸交换是由于河床形态引起的水头梯度,这些水头梯度诱导了对流传输;冲淤交换发生是由于移动河床截留和释放孔隙水。潜流交换的主要影响因素包括:河道流量、河床水力传导性、河床形态、河道弯曲、河床不均匀和背景条件。还探讨了反应性溶质、胶体颗粒共存情况下潜流交换的规律。对潜流交换研究现存的主要问题及未来研究展望提出了看法。  相似文献   

12.
《Applied Geochemistry》1991,6(5):565-574
Natural colloids (1–450 nm) and suspended particles (>450 nm) were characterized in groundwaters of the Whiteshell Research Area of southern Manitoba to evaluate their potential role in radionuclide transport through fractured granite. Data on particle concentrations, size distributions, compositions and natural radionuclide content were collected to predict radionuclide formation and to provide a database for future colloid migration studies. The concentrations of colloids between 10 and 450 nm ranged between 0.04 and 1 mg/l. The concentrations of suspended particles, which require higher groundwater velocities for transport, varied from 0.04 to 14 mg/l. Colloid (10–450 nm) concentrations as low as these observed in Whiteshell Research Area groundwater would have a minimal effect on radionuclide transport, assuming that radionuclide sorption on colloids is reversible. If radiocolloid formation is not reversible, and radionuclide-containing colloids cannot sorb onto fracture walls, the importance of natural colloids in radionuclide transport will depend upon particle migration properties.  相似文献   

13.
In this study, we have investigated and clarified the processes occurring during the alteration of SON68 glass – the reference nuclear glass for the waste arising from reprocessing of spent fuel from light water reactors – at 50 °C in Callovo-Oxfordian clay groundwater in presence of magnetite. Magnetite is known to be one of the iron corrosion products expected to be present in the vicinity of glass in geological disposal conditions. The effects of the amount of magnetite relative to the glass surface and the transport of aqueous species during glass alteration were studied. A first series of experiments was focused on the effect of various magnetite amounts by mixing and altering glass and magnetite powders. In a second series of experiments, magnetite was separated from the glass by a diffusive barrier in order to slow down the transport of aqueous species. Glass alteration kinetics were analyzed and solids were characterized by a multiscale approach using Raman Spectroscopy, Scanning and Transmission Electron Microscopy, Energy-Dispersive X-ray and Scanning Transmission X-ray Microscopy coupled with Fe L2,3-edge and C K-edge NEXAFS.It appears that glass alteration increases with the amount of magnetite and that the transport of aqueous species is a key parameter. Several processes have been identified such as (i) the silica sorption on the magnetite surface, (ii) the precipitation of Fe-silicates in the vicinity of the glass (iii) the precipitation of SiO2 on the magnetite surface, (iv) the incorporation of Fe within the alteration layer. Process (iv) was not frequently observed, suggesting local variations in geochemical conditions. Moreover, this process is strongly influenced by the transport of aqueous species as indicated by the morphology and composition of the alteration layers. Indeed, when glass and magnetite are homogeneously mixed, the glass alteration layer consists of a gel enriched in Fe having the same Fe(II)/Fe(III) ratio as in magnetite. When both materials are separated by a diffusive barrier, the glass alteration layer consists of a porous gel (not enriched in iron) in presence of a mixture of Fe-silicates with Fe having the same valence as in magnetite, rare-earth precipitates and phyllosilicates. These results suggest that Fe incorporation within the alteration layer changes depending on the distance and the time required for dissolved Fe originating from the magnetite to reach the glass.  相似文献   

14.
The effect of calcium on synthetic glass alteration mechanisms has been studied. It is known that the higher the calcium content in the glass, the higher the forward rate. However, in a confined medium reaching apparent saturation state and a pH90°C around 9, synthetic calcium-bearing glasses are those with the lowest alteration rates. This work brings new and fundamental evidence toward understanding the alteration mechanisms: the rate-decreasing effect of calcium exists even if the calcium comes from the solution. Calcium from solution reacts with silica network in the hydrated layer at the glass surface. The calcium effect on the alteration kinetics is explained by the condensation of a passivating reactive interphase (PRI) whose passivating properties are strongly enhanced when calcium participates in its construction. These experiments provide new evidence of the role of condensation mechanisms in glass alteration. This better understanding of the calcium effect on glass long-term behavior will be useful both for improving glass formulations and for understanding the influence of the water composition.  相似文献   

15.
潜流带是河流地表水和地下水交混区域,是河流中重要的物质能量交换和水生生物栖息的场所,而胶体颗粒在潜流带中沉积,会改变潜流带中的水动力结构和生态环境。本文利用室内循环水槽实验和多物理场耦合的数值模拟方法,旨在研究胶体颗粒在河流上覆水与潜流带中的迁移过程和胶体颗粒在潜流带中沉积分布特征及其对不同因素的响应规律。结果表明:河流上覆水中胶体会逐渐被河床截留且截留胶体集中于河床浅层;沙波水平方向截留量呈现出迎水面较高、背水面较低的趋势;胶体在潜流带沉积的主要机制是潜流交换、颗粒沉降与河床截留作用。本文能为胶体颗粒在潜流带中的生态环境作用研究提供科学依据,并为河流生态环境修复、河流健康管理提供理论支持。  相似文献   

16.
The 1750-m-diameter, bowl-shaped Talemzane impact structure in Algeria is emplaced in Senonian or Eocene flint-bearing limestones. Field studies reveal a thin layer of light-colored polymict breccia with rounded, dark inclusions beneath a limestone megablock zone located at the top of the crater rim. The matrix of the rounded, dark inclusions consists of Si-rich glass and microcrystalline calcite. The latter is characterized by high contents of Si and Al suggesting rapid crystallization of the calcite from a melt. Backscattered electron imagery shows textural evidence for liquid immiscibility between the CaCO3-rich and Si-rich glass of the matrix in the form of intermingling of calcite with Si-rich glass, coalesced blebs within silicate glass, individual calcite blebs within Si-rich glass, carbonate spherical globules in fresh Si-rich-glass, and sharp menisci between silicate and calcite blebs. These features are interpreted as evidence of impact melting of limestone and flint. The low totals of the Si-Al-Mg-rich glasses suggest that they contain significant amounts of volatiles. X-ray diffraction analyses indicate partial alteration of the Si-Mg-Al-rich glass to phyllosilicates.  相似文献   

17.
《Applied Geochemistry》1998,13(1):31-42
Organic material typically constitutes a substantial volume (∼ 90%) of the low-level radioactive wastes (LLRW) intended for near-surface disposal at Chalk River Laboratories (CRL), Ontario, Canada. These wastes can contain a large variety of organic materials, including paper, cardboard, plastic bags, used clothing, and mop heads. After emplacement in a disposal facility, leaching of the LLRW by water can mobilize inorganic and organic substances, ranging from small molecules such as acetic acid to unidentifiable material of colloidal size range. This study determined the potential for colloid formation produced by LLRW degradation, because colloid-facilitated transport of contaminants could affect the safety performance of a disposal facility.The decomposition of compacted LLRW was simulated by recirculating water in a closed system over several compacted bales of waste to determine the potential composition and colloid content of leachates. Size fractionation of organic matter was performed on leachate samples that had been aged for 18 months to simulate the microbial degradation of organic matter within leachates during migration out of the LLRW disposal facility. The aged leachates contained high concentrations of dissolved organic matter, ranging between 74 and 5074 mg/l as C. In most of the leachates, volatile fatty acids accounted for a significant fraction (up to 81%) of the dissolved organic carbon. Although 5–110 mg/l of organic colloids were observed in leachates, in most cases, the organic colloids made up a very small fraction of the total leached organic carbon. Therefore, since the complexation properties of dissolved and colloidal organics are probably similar, contaminants complexed to organics are most likely to be dissolved and not affected by colloid transport. The leachates also contained significant quantities of Fe and Al, which could potentially precipitate Fe and Al as colloids after oxidation. Although a significant portion of the dissolved Fe may have been produced by the corrosion of the ☐es used to contain the bales, the high Fe concentrations could be representative of leachates from LLRW that contain metallic Fe components. If Fe and Al colloids are stable, stable concentrations in LLRW leachates could be high enough to affect contaminant transport. Therefore, the Fe and Al content of LLRW should be minimized. The concentrations of natural colloids in sandy aquifers, such as those found at CRL are too low to affect contaminant migration significantly.  相似文献   

18.
Trace element concentrations of altered basaltic glass shards (layer silicates) and zeolites in volcaniclastic sediments drilled in the volcanic apron northeast of Gran Canaria during Ocean Drilling Program (ODP) leg 157 document variable element mobilities during low-temperature alteration processes in a marine environment. Clay minerals (saponite, montmorillonite, smectite) replacing volcanic glass particles are enriched in transition metals and rare earth elements (REE). The degree of retention of REE within the alteration products of the basaltic glass is correlated with the field strength of the cations. The high field-strength elements are preferentially retained or enriched in the alteration products by sorption through clay minerals. Most trace elements are enriched in a boundary layer close to the interface mineral-altered glass. This boundary layer has a key function for the physico-chemical conditions of the subsequent alteration process by providing a large reactive surface and by lowering the fluid permeability. The release of most elements is buffered by incorporation into secondary precipitates (sodium-rich zeolites, phillipsite, Fe- and Mn-oxides) as shown by calculated distribution coefficients between altered glasses and authigenic minerals. Chemical fluxes change from an open to a closed system behavior during prograde low-temperature alteration of volcaniclastic sediments with no significant trace metal flux from the sediment to the water column.  相似文献   

19.
《Applied Geochemistry》1993,8(3):235-244
It is shown that glass shards from volcanic eruptions of known age are useful in natural analogue studies connected with nuclear waste disposal. They may be sequentially leached in bulk with HF and the hydration layer thickness determined. If they have also been irradiated with neurons in a reactor, some elemental profile information is available at the same time. Applying this to New Zealand volcanic glass shards gave as many as 15 different fractions, and information about the distribution of up to 16 trace elements. Those shards from a 22 ka eruption yielded hydration rates of ∼2.5 × 10−11 g/cm2/d while rates from a 340 ka eruption were 1.5 × 10−12 −1.2 × 10−11 g/cm2/d. The percentage of the total mass hydrated ranged between 5 and 35%. As found in some other studies, many elements accumulate on the surface of the shards, particularly Cr, Co and Fe, but it is shown here that they mostly originate in surrounding groundwater rather than the bulk glass. Rubidium and Cs tend to be removed instead. There was no obvious correlation between degree of hydration and the environment of deposition. The use of glass shards from volcanic eruptions is recommended for such studies because they are ubiquitous, and occurrence is less dependent on local geology than for some sample types.  相似文献   

20.
Particle size distributions and the mineralogy of inorganic colloids in waters draining the adit of an abandoned mine (Goesdorf, Luxembourg) were quantified by single particle counting based on light scattering (100 nm–2 μm) combined with transmission electronic microscopy coupled with energy dispersive spectroscopy and selected area electron diffraction. This water system was chosen as a surrogate for groundwaters. The dependence of the colloid number concentration on colloid diameters can be described by a power-law distribution in all cases. Power-law slopes ranged from −3.30 to −4.44, depending on water ionic strength and flow conditions. The same main mineral types were found in the different samples: 2:1 phyllosilicates (illite and mica), chlorite, feldspars (albite and orthoclase), calcite and quartz; with a variable number of Fe oxide particles. The colloid mineralogical composition closely resembles the composition of the parent rock. Spatial variations in the structure and composition of the rock in contact with the waters, i.e. fissured rock versus shear joints, are reflected in the colloid composition. The properties of the study colloids, as well as the processes influencing them, can be considered as representative of the colloids present in groundwaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号