首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This study examines the distribution of leachable particulate iron (Fe) in the Columbia River, estuary, and near-field plume. Surface samples were collected during late spring and summer of 2004–2006 as part of four River Influence on Shelf Ecosystems (RISE) cruises. Tidal amplitude and river flow are the primary factors influencing the estuary leachable particulate Fe concentrations, with greater values during high flow and/or spring tides. Near the mouth of the estuary, leachable particulate Fe [defined as the particulate Fe solubilized with a 25% acetic acid (pH 2) leach containing a weak reducing agent to reduce Fe oxyhydroxides and a short heating step to access intracellular Fe] averaged 770 nM during either spring tide or high flow, compared to 320 nM during neap tide, low flow conditions. In the near-field Columbia River plume, elevated leachable particulate Fe concentrations occur during spring tides and/or higher river flow, with resuspended shelf sediment as an additional source to the plume during periods of coastal upwelling and spring tides. Near-field plume concentrations of leachable particulate Fe (at a salinity of 20) averaged 660 nM during either spring tide or high flow, compared to 300 nM during neap tide, low flow conditions. Regardless of tidal amplitude and river flow, leachable particulate Fe concentrations in both the river/estuary and near-field plume are consistently one to two orders of magnitude greater than dissolved Fe concentrations. The Columbia River is an important source of reactive Fe to the productive coastal waters off Oregon and Washington, and leachable particulate Fe is available for solubilization following biological drawdown of the dissolved phase. Elevated leachable Fe concentrations allow coastal waters influenced by the Columbia River plume to remain Fe-replete and support phytoplankton production during the spring and summer seasons.  相似文献   

2.
The relative impacts of tidal (neap, spring) and river discharge (including a flood event) forcing upon water and sediment circulation have been examined at the rock-bound Guadiana estuary. Near-bed and vertical profiles of current, salinity, turbidity, plus surface suspended sediment concentrations (SSC, at some stations only), were collected at the lower and central/upper estuary during tidal and fortnightly cycles. In addition, vertical salinity and turbidity profiles were collected around high and low water along the estuary. Tidal asymmetry produced faster currents on the ebb than on the flood, especially at the mouth. This pattern of seaward current dominance was enhanced with increasing river flow, due to horizontal advection that was confined within the narrow estuarine channel. The freshwater inputs and, at a degree less, the tidal range controlled the vertical mixing and stratification importance. Well-mixed (spring) and partially stratified (neap) conditions alternated during periods of low river flows, with significant intratidal variations induced by tidal straining (especially at the partially stratified estuary). Highly stratified conditions developed with increasing river discharge. Intratidal variability in the pycnocline depth and thickness resulted from current shear during the ebb. A salt wedge with tidal motion was observed at the lower estuary during the flood event. Depending on the intensity of turbulent mixing, the residual water circulation was dominantly controlled either by tidal asymmetry or gravitational circulation. The SSC was governed by cyclical local processes (resuspension, deposition, mixing, advection) driven by the neap-spring fluctuations in tidal current velocities. More, intratidal variability in stratification indicated the significance of tidal pumping at the partially and highly stratified estuary. The estuary turbidity maximum (ETM) was enhanced with increasing current velocities, and displaced downstream during periods of high river discharge. During the flood event, the ETM was expelled out of the estuary, and the SSC along the estuary was controlled by the sediment load from the drainage basin. Under these highly variable river flow conditions, our observations suggest that sand is exported to the nearshore over the long-term (>years).  相似文献   

3.
The Konkouré Estuary in the Republic of Guinea is a poorly understood atypical mangrove system. Sediment dynamics in tropical estuaries are controlled by a combination of processes including river discharge, morphology, salinity, erosion and deposition processes, the settling of mud, physico-chemical processes and mangrove swamps. Here we present a consistent set of data aimed at characterising the estuary and thus, increasing our understanding of tropical systems, as well as studying the impact of human intervention in the region. Water elevations, current measurements, salinity, suspended sediment concentrations, bathymetry and sediment cover are presented following a 3 year survey of the Konkouré Estuary. Here we provide conclusive evidence that the Lower Konkouré is a shallow, funnel shaped, mesotidal, mangrove-fringed, tide dominated estuary, well mixed during low river discharge. The estuary becomes stratified during high river flows and spring tides whereas a salt wedge appears during neap tides. The Konkouré Estuary has been described as hypersynchronous, and has three terminal outlets, two of which are landward-directed, attesting to a tidal pumping effect, while the third one is seaward-directed, and is controlled by the mangrove. The suspended matter is transported by the tidal effect within the middle estuary and is therefore trapped in the Turbidity Maximum zone (TMZ). The location of the TMZ is river-controlled and is correlated with residual currents but not with salinity front. A dam, constructed 130 km upstream, impacts on the hydrodynamics, and reduces the salinity intrusion by about 25%. It causes an increased low river discharge whereas its efficiency over high river flows is unclear.  相似文献   

4.
利用瓯江河口及东部近岸海区11个验潮站的实测大潮和小潮潮位过程进行统计,并探讨了潮波由外海向瓯江河口及上游传播过程中潮差的沿程变化。结果表明,受水下地形摩阻、岛屿阻隔及岸线束窄作用,潮波由外海向河口内传播过程中,潮差逐渐减小,且低潮位逐渐抬高;同时,越靠近河口及上游,潮差沿程变化越为显著。  相似文献   

5.
根据2014年1月及2017年2月杭州湾大、小潮水沙资料,计算了流速、含沙量、单宽潮量、单宽输沙量,进而分析了潮周期断面净潮量、净输沙量和区域冲淤分布。研究发现杭州湾涨、落潮平均流速比值整体较20世纪八九十年代增大,绝大部分区域大于1.0,涨潮流相对增强,澉浦南岸和金山北岸尤为显著。含沙量平面上分布澉浦、杭州湾南岸两个高值区(大潮大于3 kg/m3,小潮大于1.3 kg/m3)以及北岸湾口至乍浦之间的低值区(大潮小于2 kg/m3,小潮小于0.9 kg/m3),随潮汛变化显著,最大含沙量浓度通常滞后于急流时刻。各测站涨、落潮量和输沙量呈现“大涨大落”和“大进大出”的特征,造成杭州湾短时间尺度内的“大冲大淤”。大潮两涨两落金山与乍浦、乍浦与澉浦之间区域净输沙量可达几千万吨,净冲淤则在几百万吨。  相似文献   

6.
辽东湾北部潮滩及浅海区泥沙运移趋势   总被引:1,自引:0,他引:1  
本文根据多断面昼夜水文、泥沙观测,潮滩重复水准测量并借助~(210)Pb测年,分析了辽东湾北部潮滩和浅海区潮流及泥沙的分布和变化。结果表明:本区泥沙以纵向搬运为特征。双台子河口及西部来水来沙是东部沙洲和浅滩发育的主导因素。汛季大潮期,泥沙落淤在河口及附近浅海且泥沙自西向东运移;小潮期,泥沙除纵向扩散外(向东),存在净向海搬运。调查期滩面淤积强度自西向东减弱。高、中浓度泥沙浑位置与盐度梯度区的上部界面相符,多出现在25—30km以内的岸段(水深10—13m),30km以外泥沙骤减,海水亦由黄棕色变为兰绿色。  相似文献   

7.
Saltwater intrusion is a serious environmental problem in the Zhujiang River Estuary(ZRE),which threatens the water supply of fifteen million people.The hydrological observations as well as meteorological and tidal forcing in the winter of 2007/2008 were analyzed to examine the saltwater intrusion in the ZRE.The observational results suggest that the maximum vertical difference of salinity can reach 10 in the Humen Channel during neap tide,but is very small in the Hengmen Channel.The vertically averaged salinity from time series stations during spring tide is higher than that during neap tide.A three-dimensional finite difference model was developed based on the environmental fluid dynamic code(EFDC) to study the mechanism of saltwater intrusion and salinity stratification in the ZRE.By analyzing the salt transport and the temporal variation of saltwater intrusion,the authors found that the net salt transport due to the estuarine circulation during neap tide was more than that during spring tide.This caused salt to advance more into the estuary during neap tide.However,saltwater intrusion was stronger during spring tide than that during neap tide because the spring-neap variation in salt transport was small relative to the total length of the saltwater intrusion.The physical mechanism causing this saltwater intrusion was investigated by a series of sensitivity experiments,in order to examine saltwater intrusion in response to river discharge and winds.The freshwater source was a dominant influencing factor to the saltwater intrusion and controlled salinity structure,vertical stratification and length of the saltwater intrusion.The prevailing northeast monsoon during winter could increase the saltwater intrusion in the ZRE.Though the southwest wind was unfavorable to saltwater intrusion during spring tide,it could increase stratification and saltwater intrusion during neap tide.  相似文献   

8.
ThisstudywassupportedbytheNationalNaturalScienceFoundationofChinaundercontractNo.49276274,theZhejiangProvinceNaturalScienceFoundationundercontractNo.490013,theChina-Australiabilateralscienceandtechnologyprogram,theAustralianInstituteofMarineScience,theModellingLaboratoryoftheMarineScienceintheSecondInstituteofOceanographyoftheStateOceanicAdministration.INTRODUCTIONTheJiaojiangEstuaryis1ocatedintheeasterncoastofChina,2OokmfromthesouthoftheChangjiangRiver(YangtzeRiver),linkedin…  相似文献   

9.
潮滩泥沙的输运过程是河口近岸泥沙输运的重要组成部分,也是诊断潮滩侵蚀-淤积的重要动力指标,特别是在地貌演变过程显著的区域更具指示意义.本研究选择长江口崇明岛东北部潮滩,在2018年3月30日-4月10日进行三脚架多参数观测,获取了高分辨率的流速、含沙量等剖面数据,运用机制分解法分析了连续21个潮周期的泥沙输运过程.结果...  相似文献   

10.
强人类活动目前已经成为河口演变的主要动力。阐明流量驱动下河控型河口潮波传播演变过程及机制,对河口治理及人类活动的影响评价具有重要指导意义。以珠江磨刀门河口为例,研究了径潮动力阶段性演变特征。采用流量驱动的R_TIDE数据驱动模型探究了该区潮波振幅梯度和上下游动力边界(即上游流量和口门振幅)关系的变化规律。结果表明,在强人类活动影响下,各潮位站M2分潮振幅明显上升(三灶站除外),且具有季节性差异和阶段性变化,灯笼山-马口河段的M2分潮振幅沿程平均增大约0.07 m,河段潮波振幅梯度平均增大约4.61×10–6 m–1。研究潮波振幅梯度与上下游动力边界的阈值的关系表明,阈值效应主要出现在甘竹-马口河段。在强人类活动影响下,潮波振幅梯度阈值增大,相应的流量阈值增大,而振幅阈值基本不变。在达到振幅阈值之前,由于底床摩擦效应,大潮振幅衰减效应大于小潮,而在超过振幅阈值后,地形辐聚效应成为影响潮波振幅梯度变化的主要因素,大潮振幅衰减效应小于小潮。阈值的变化主要与流量、地形、摩擦等多因子耦合作用有关,当地形辐聚效应和底床摩擦效应达到平衡时,潮波振幅梯度与上下游动力边界之间则出现阈值效应。该现象的发现可为河口海岸防灾减灾和水资源管理等实际问题提供重要理论支撑。  相似文献   

11.
李鹏  杨世伦 《海洋与湖沼》2014,45(1):126-133
为研究潮间带和潮下带的水、沙、盐交换,于2006年6月25~28日(夏季大潮)和2006年12月29日~2007年1月4日(冬季中-大潮和小潮)在长江口九段沙一典型潮沟的固定点利用OBS-3A和ADP-XR进行了水深、浊度、盐度、流速流向剖面和回声强度观测。结果和结论为:(1)夏季大潮、冬季中-大潮、冬季小潮的潮周期垂向平均流速分别为26.5、15.9和8.4 cm/s,夏、冬季观测到的最大流速分别为84 cm/s和35 cm/s。(2)夏季盐度变化范围为0.65~4.91,平均盐度2.14;冬季盐度变化范围为3.5~10.3,中-大潮和小潮平均盐度分别为6.26和7.98。(3)高悬沙浓度出现在涨潮初期和部分落潮末期的低水位阶段;涨潮阶段的平均悬沙浓度是落潮阶段的1.11~7.0倍。(4)涨、落潮阶段的水体和盐输运量大体上趋于平衡;(5)无论是冬夏季或大小潮,潮沟在潮周期内的净输沙方向均指向陆,即落潮输沙量小于涨潮输沙量(平均小40%);平均每个潮周期的净输沙量为6102 kg,结合潮盆面积推算的潮周期沉积速率为0.0112 mm/tide,或8.2 mm/a。  相似文献   

12.
潮滩垂向沉积韵律层的形成主要取决于周期性的潮汐条件,包括涨落潮、大小潮、季节性及更长时间尺度的潮汐特征,为探究大小潮周期对潮滩沉积物垂向层理形成机制的影响,应用一维潮流泥沙与底床分层数学模型,对周期性潮汐条件作用下潮滩垂向沉积韵律层形成机制进行了数值模拟研究。结果表明,大小潮的周期性是模型中沉积层理表现韵律性的主要原因之一,韵律层中单个层理结构对应于1个大小潮周期过程,层理结构由形成于小潮期间的泥质层及形成于大潮期间的砂质层组成,层理的厚度也呈旋回性变化,大潮时层理较厚而小潮时层理较薄。水体边界含沙量是影响潮汐层理结构的重要因子,边界含沙量中粉砂占比增大会使潮汐韵律层整体粗化且砂质层厚度增大,当边界含沙量整体显著增大时,潮滩上的垂向潮汐韵律层会更加完整且厚度明显增大。潮汐层理的形成与特征是多种因子共同作用的结果,后续需进一步探究包括波浪、风暴潮、潮滩生物等其他因子的作用。  相似文献   

13.
Observations of the residual fluxes of water, salt and suspended sediment are presented for seven stations along the Tamar Estuary. The data include measurements over single spring and neap tidal cycles, and are generally applicable to medium or high run-off conditions.Surface to bed differences in salinity are typically of the order of several parts per thousand. Gravitational circulation is an important component of residual flow in the deep, lower reaches of the estuary. Here, Stokes drift is insignificant. In the shallow upper reaches, the major residual currents are generated by Stokes drift and freshwater inputs. Data are compared with predictions from Hansen and Rattray's (1966) model of estuarine circulation.Salt fluxes due to tidal pumping and vertical shear are directed up-estuary at spring tides, tidal pumping being dominant. Tidal pumping of salt is also directed up-estuary at neap tides, although it is insignificant in the lower reaches, where vertical shear dominates.Tidal pumping of suspended sediment is directed up-estuary near the head at spring tides, and probably contributes to the formation of the turbidity maximum. The existence of the turbidity maximum is predicted using a simplified model of the transport of water and sediment. The model shows that an additional mechanism for the existence of the turbidity maximum is an up-estuary maximum in the tidal current speeds (and thus resuspension). In the lower reaches, transport of suspended sediment is directed down-estuary at both spring and neap tides, and sediment is essentially flushed to sea with the fresh water.  相似文献   

14.
The utilisation of a brackish estuarine marsh by nekton was investigated over a semi-lunar cycle in August 1994. Nekton migrating in and out of the intertidal creeks of the marsh ‘Het Verdronken Land van Saeftinghe’ in the Westerschelde estuary, SW Netherlands, was sampled passively during seven complete tidal cycles. Sampling one tidal cycle yielded three consecutive flood samples and four consecutive ebb samples. Sampling occurred every 2–3 days, covering diel, tidal and semi-lunar situations, thus allowing comparison of tidal, diel and semi-lunar influences on the composition of the intertidal fauna.Two different tidal-migration modes were observed. The mysid shrimp, Mesopodopsis slabberi, showed maximum abundance around high tide. For the remaining common species, the mysid (Neomysis integer), the shrimp (Palaemonetes varians), the crab (Carcinus maenas) and the goby (Pomatoschistus microps) and the amphipod (Corophium volutator), highest densities were recorded during lower water heights. The faunal assemblage shifts between the different tidal stages.On two occasions, consecutive day and night samples were taken. Total densities were higher during the night samples. During spring tide, difference in community composition was noticed between the night and the day samples. During neap tide, day–night differences were less clear. Recorded total densities were highest during spring tide and lowest during neap tide. At maximum water levels, a drop in total density was observed. A shift in community composition occurred between spring and neap tides.  相似文献   

15.
Okarito Lagoon (43° 11′S, 170° 14′E) is a small (20 km2) shore‐parallel, predominantly subtidal estuary, deepest near the landward end, and linked to the sea by two subtidal channels incised through shallow subtidal and intertidal flats which occupy the southern third of the lagoon. Tides at sea vary from 2.1m (spring) to 1.2 m (neap), but in the lagoon the tidal range is constant through the lunar cycle and varies from 0.80 m at the entrance to 0.17 m in the upper lagoon. Tidal water level and flow asymmetries in the subtidal channels are separated by a 1.7 h phase difference. Variations in the net discharge through the inlet result from changing flow cross‐sections rather than from variations in current velocities. Both the tidal‐averaged volume and the tidal compartment of the lagoon vary through the lunar cycle, from maxima at spring tides to minima at neap tides.

Freshwater inflows vary from less than 11 m3.s‐1 to more than 750 m3.s‐1. During storms, water level in the lagoon rises rapidly by 2–3 m, then declines to normal over several days. Three water masses, two with salinity and turbidity largely controlled by antecedent rainfall, normally occur in the lagoon. Suspended sediment concentrations in both freshwater inflows and lagoon waters are normally low but increase during floods. Most sediment is supplied by the Waitangi‐taona River or by erosion of tidal channel margins. The lagoon is floored with organic‐rich mud and sandy mud, deposited predominantly from suspension. Surface sediment is consistently muddier than subsurface sediment, probably reflecting an increase in the mud supply since diversion of the Waitangi‐taona River in 1967.

Comparisons of the estimated sediment yield and water inflow effects of the 1967 river diversion with short‐term observations during selective logging suggest that the effects of logging on sediment yield, water balance of the lagoon, and dissolved solids inputs will be small compared with changes caused by diversion of the Waitangi‐taona River.  相似文献   

16.
长江口枯季悬沙粒度与浓度之间的关系   总被引:4,自引:0,他引:4  
2003和2004年枯季在长江口采集水样并作水文观测,对所获水样进行过滤和粒度分析,以计算悬沙浓度和悬沙粒度分布。结果表明,2003年11月小潮期间,悬沙中值粒径与悬沙浓度存在着显著的指数关系,在大潮期间没有显著关系;在2004年2月小湖期间,两者之间没有显著关系,但在大潮期间存在着显著的指数关系。枯季水体悬沙以粉砂组份为主,并且随着向口外的推移,细颗粒组份逐渐增加,但在拦门沙最大浑浊带附近,由于絮凝作用,沉积物粒度变幅较大,可产生粒径粗化的现象。小潮期间,砂含量较低,但与悬沙浓度之间有显著相关关系;大潮期间,悬沙粒径粗化,但砂含量与悬沙浓度之间的关系不显著。上述分布趋势与沉积物来源、当地的水动力条件和絮凝作用等因素有密切关系。  相似文献   

17.
潮致余流和潮混合对长江口外东北海域低盐水团的作用   总被引:1,自引:0,他引:1  
长江冲淡水对黄海、东海水文环境有重要影响,它主要以羽状形态向外海扩展,在某些年份的特殊时间段也存在孤立的低盐水团现象。在低盐水团的动力机制研究中,风、径流量、台湾暖流、天文潮和斜压不稳定的作用已得到讨论。天文潮对冲淡水及低盐水团的影响主要包括潮致余流和潮混合,潮致余流作用仍缺乏讨论。本文对1983年8月低盐水团的动力机制进行数值模拟分析,重点讨论了潮致余流和潮混合的影响。结果表明:潮致Lagrange余流促使一部分冲淡水从口门向北输运,在32°N附近呈舌状转向东,有利于在口外东北海域形成低盐水团;小潮转大潮的垂向混合作用加强,浅水区表层盐度升高的速度快于较深水区,也有利于在口外东北海域形成低盐水团。  相似文献   

18.
Profiles of tidal current and suspended sediment concentration(SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/m3 in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are responsible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Settling occurs at the slack water periods to cause SSC troughs and formation of a thin fluff layer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.  相似文献   

19.
长江口徐六泾洪季水沙特性观测研究   总被引:3,自引:0,他引:3  
程江  何青  王元叶  车越  张经 《海洋通报》2003,22(5):86-91
2001年7月,在长江口徐六泾对流速、流向和悬浮泥沙浓度进行了大小潮定点观测。观测数据分析表明徐六泾处大潮流速及其变化远大于小潮流速。大潮悬沙浓度大于小潮悬沙浓度。由于径流的影响,落潮期间垂向速度梯度比涨潮期间大,落潮垂向切变增强,使落潮期间悬沙浓度的变化幅度大于涨潮期间的泥沙变化幅度,同时存在泥沙浓度峰值滞后于流速峰值的现象。  相似文献   

20.
本文基于4次洪枯季同步水文观测资料,着重分析了长江口北支悬沙浓度的潮周期变化、垂向分布、纵向分布和悬沙输移及其时空差异。研究结果显示,悬沙浓度的潮周期变化过程在大中潮期以M型(双峰型)为主,下段主槽内在大潮期多出现V型,上段在枯季可出现涨潮单峰型;小潮期可出现无峰、单峰或双峰型。涨、落潮悬沙浓度峰值及均值,在枯季多涨潮大于落潮,洪季中小潮特别是小潮期易出现落潮大于涨潮;下段主槽内在大潮期易出现落潮大于涨潮。悬沙浓度的垂向分布及其变化特点,在大中潮期与悬沙的潮周期变化型式有关,其中M型存在显著的洪枯季差异。纵向上,最高悬沙浓度在枯季出现于中段灵甸港至三和港之间及附近河段,洪季则在下段三条港附近。潮周期悬沙净输移,枯季大多向陆特别是大中潮期,洪季中上段大多向海,下段大潮期多向陆、中小潮易出现向海;下段主槽内在大潮期易出现向海。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号